Is it a bug or a feature? Identifying software bugs using graph attention networks

Nikos Kanakaris, Ilias Siachos, N. Karacapilidis
{"title":"Is it a bug or a feature? Identifying software bugs using graph attention networks","authors":"Nikos Kanakaris, Ilias Siachos, N. Karacapilidis","doi":"10.1109/ICTAI56018.2022.00215","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel approach for identifying software bugs by building on a meaningful combination of word embeddings, graph-based text representations and graph attention networks. Existing approaches aim to advance each of the above components individually, without considering an integrative approach. As a result, they ignore information that is related to either the structure of a given text or an individual word of the text. Instead, our approach seamlessly incorporates both semantic and structural characteristics into a graph, which are then fed to a graph attention network in order to classify GitHub issues as bugs or features. Our experimental results demonstrate a significant improvement in terms of accuracy, precision and recall of the proposed approach compared to a list of classical and graph-based machine learning models. The dataset for the experiments reported in this paper has been retrieved from the kaggle.com platform and concerns GitHub issues with short-text attributes.","PeriodicalId":354314,"journal":{"name":"2022 IEEE 34th International Conference on Tools with Artificial Intelligence (ICTAI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 34th International Conference on Tools with Artificial Intelligence (ICTAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI56018.2022.00215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a novel approach for identifying software bugs by building on a meaningful combination of word embeddings, graph-based text representations and graph attention networks. Existing approaches aim to advance each of the above components individually, without considering an integrative approach. As a result, they ignore information that is related to either the structure of a given text or an individual word of the text. Instead, our approach seamlessly incorporates both semantic and structural characteristics into a graph, which are then fed to a graph attention network in order to classify GitHub issues as bugs or features. Our experimental results demonstrate a significant improvement in terms of accuracy, precision and recall of the proposed approach compared to a list of classical and graph-based machine learning models. The dataset for the experiments reported in this paper has been retrieved from the kaggle.com platform and concerns GitHub issues with short-text attributes.
这是一个bug还是一个特性?使用图形注意网络识别软件缺陷
本文提出了一种基于词嵌入、基于图形的文本表示和图形注意网络的有意义组合来识别软件缺陷的新方法。现有的方法旨在单独推进上述每个组成部分,而不考虑综合方法。因此,它们忽略了与给定文本的结构或文本中的单个单词相关的信息。相反,我们的方法无缝地将语义和结构特征合并到一个图中,然后将其馈送到一个图关注网络,以便将GitHub问题分类为bug或功能。我们的实验结果表明,与一系列经典和基于图的机器学习模型相比,所提出的方法在准确性、精密度和召回率方面有了显着提高。本文中报告的实验数据集是从kaggle.com平台检索的,涉及GitHub短文本属性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信