Sarah Neuwirth, Feiyi Wang, S. Oral, Sudharshan S. Vazhkudai, James H. Rogers, U. Brüning
{"title":"Using Balanced Data Placement to Address I/O Contention in Production Environments","authors":"Sarah Neuwirth, Feiyi Wang, S. Oral, Sudharshan S. Vazhkudai, James H. Rogers, U. Brüning","doi":"10.1109/SBAC-PAD.2016.10","DOIUrl":null,"url":null,"abstract":"Designed for capacity and capability, HPC I/O systems are inherently complex and shared among multiple, concurrent jobs competing for resources. Lack of centralized coordination and control often render the end-to-end I/O paths vulnerable to load imbalance and contention. With the emergence of data-intensive HPC applications, storage systems are further contended for performance and scalability. This paper proposes to unify two key approaches to tackle the imbalanced use of I/O resources and to achieve an end-to-end I/O performance improvement in the most transparent way. First, it utilizes a topology-aware, Balanced Placement I/O method (BPIO) for mitigating resource contention. Second, it takes advantage of the platform-neutral ADIOS middleware, which provides a flexible I/O mechanism for scientific applications. By integrating BPIO with ADIOS, referred to as Aequilibro, we obtain an end-to-end and per job I/O performance improvement for ADIOS-enabled HPC applications without requiring any code changes. Aequilibro can be applied to almost any HPC platform and is mostly suitable for systems that lack a centralized file system resource manager. We demonstrate the effectiveness of our integration on the Titan system at the Oak Ridge National Laboratory. Our experiments with a synthetic benchmark and real-world HPC workload show that, even in a noisy production environment, Aequilibro can improve large-scale application performance significantly.","PeriodicalId":361160,"journal":{"name":"2016 28th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 28th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBAC-PAD.2016.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Designed for capacity and capability, HPC I/O systems are inherently complex and shared among multiple, concurrent jobs competing for resources. Lack of centralized coordination and control often render the end-to-end I/O paths vulnerable to load imbalance and contention. With the emergence of data-intensive HPC applications, storage systems are further contended for performance and scalability. This paper proposes to unify two key approaches to tackle the imbalanced use of I/O resources and to achieve an end-to-end I/O performance improvement in the most transparent way. First, it utilizes a topology-aware, Balanced Placement I/O method (BPIO) for mitigating resource contention. Second, it takes advantage of the platform-neutral ADIOS middleware, which provides a flexible I/O mechanism for scientific applications. By integrating BPIO with ADIOS, referred to as Aequilibro, we obtain an end-to-end and per job I/O performance improvement for ADIOS-enabled HPC applications without requiring any code changes. Aequilibro can be applied to almost any HPC platform and is mostly suitable for systems that lack a centralized file system resource manager. We demonstrate the effectiveness of our integration on the Titan system at the Oak Ridge National Laboratory. Our experiments with a synthetic benchmark and real-world HPC workload show that, even in a noisy production environment, Aequilibro can improve large-scale application performance significantly.