T. Andronikos, N. Koziris, G. Papakonstantinou, P. Tsanakas
{"title":"Optimal scheduling for UET-UCT generalized n-dimensional grid task graphs","authors":"T. Andronikos, N. Koziris, G. Papakonstantinou, P. Tsanakas","doi":"10.1109/IPPS.1997.580872","DOIUrl":null,"url":null,"abstract":"The n-dimensional grid is one of the most representative patterns of data flow in parallel computation. The most frequently used scheduling models for grids is the unit execution-unit communication time (UET-UCT). We enhance the model of n-dimensional grid by adding extra diagonal edges. First, we calculate the optimal makespan for the generalized UET-UCT grid topology and then we establish the minimum number of processors required, to achieve the optimal makespan. Furthermore, we solve the scheduling problem for generalized n-dimensional grids by proposing an optimal time and space scheduling strategy. We thus prove that UET-UCT scheduling of generalized n-dimensional grids is low complexity tractable.","PeriodicalId":145892,"journal":{"name":"Proceedings 11th International Parallel Processing Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 11th International Parallel Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPPS.1997.580872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31
Abstract
The n-dimensional grid is one of the most representative patterns of data flow in parallel computation. The most frequently used scheduling models for grids is the unit execution-unit communication time (UET-UCT). We enhance the model of n-dimensional grid by adding extra diagonal edges. First, we calculate the optimal makespan for the generalized UET-UCT grid topology and then we establish the minimum number of processors required, to achieve the optimal makespan. Furthermore, we solve the scheduling problem for generalized n-dimensional grids by proposing an optimal time and space scheduling strategy. We thus prove that UET-UCT scheduling of generalized n-dimensional grids is low complexity tractable.