Dense Depth Estimation with Absolute Scale

Xing Jin, Zhiwen Yao, Jingjing Zhang
{"title":"Dense Depth Estimation with Absolute Scale","authors":"Xing Jin, Zhiwen Yao, Jingjing Zhang","doi":"10.23919/CHICC.2018.8482837","DOIUrl":null,"url":null,"abstract":"Considering the difficulties in estimating depth from single image, in this paper, we propose a method to obtain the absolute scale depth map by combining the convolution neural network and depth filter. We compute relative transformation between consecutive frames by direct tracking features, which are extracted from RGB images and whose depthes are predicted by deep network, and then optimize relative motion by searching for a better feature alignment in epipolar line, and finally update every pixel depth of the reference frame by depth filter. We evaluate the proposed method on the open dataset comparison against the state of the art in depth estimation to evaluate our method.","PeriodicalId":158442,"journal":{"name":"2018 37th Chinese Control Conference (CCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 37th Chinese Control Conference (CCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CHICC.2018.8482837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Considering the difficulties in estimating depth from single image, in this paper, we propose a method to obtain the absolute scale depth map by combining the convolution neural network and depth filter. We compute relative transformation between consecutive frames by direct tracking features, which are extracted from RGB images and whose depthes are predicted by deep network, and then optimize relative motion by searching for a better feature alignment in epipolar line, and finally update every pixel depth of the reference frame by depth filter. We evaluate the proposed method on the open dataset comparison against the state of the art in depth estimation to evaluate our method.
基于绝对尺度的密集深度估计
针对单幅图像深度估计困难的问题,本文提出了一种将卷积神经网络与深度滤波相结合的绝对尺度深度图获取方法。我们从RGB图像中提取直接跟踪特征,通过深度网络预测其深度,计算连续帧之间的相对变换,然后通过在极线上搜索更好的特征对齐来优化相对运动,最后通过深度滤波器更新参考帧的每个像素深度。我们对所提出的方法进行了开放数据集比较,并与深度估计的最新状态进行了比较,以评估我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信