H. Shodja, M. Tabatabaei, A. Ostadhossein, L. Pahlevani
{"title":"Elastic fields of interacting point defects within an ultra-thin fcc film bonded to a rigid substrate","authors":"H. Shodja, M. Tabatabaei, A. Ostadhossein, L. Pahlevani","doi":"10.2478/s13531-013-0116-7","DOIUrl":null,"url":null,"abstract":"Certain physical and mechanical phenomena within ultra-thin face-centered cubic (fcc) films containing common types of interacting point defects are addressed. An atomic-scale lattice statics in conjunction with many-body interatomic potentials suitable for binary systems is conducted to analyze the effects of the depth on the: (1) formation energy and layer-by-layer displacements due to the presence of vacancy-octahedral self-interstitial atom (OSIA) ensemble, and (2) elastic fields as well as the free surface shape in the case of vacancy-dopant interaction. Moreover, the effects of the inter-defect spacing for various depths are also examined. To ensure reasonable accuracy and numerical convergence, the atomic interaction up to the second-nearest neighbor is considered.","PeriodicalId":407983,"journal":{"name":"Central European Journal of Engineering","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/s13531-013-0116-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Certain physical and mechanical phenomena within ultra-thin face-centered cubic (fcc) films containing common types of interacting point defects are addressed. An atomic-scale lattice statics in conjunction with many-body interatomic potentials suitable for binary systems is conducted to analyze the effects of the depth on the: (1) formation energy and layer-by-layer displacements due to the presence of vacancy-octahedral self-interstitial atom (OSIA) ensemble, and (2) elastic fields as well as the free surface shape in the case of vacancy-dopant interaction. Moreover, the effects of the inter-defect spacing for various depths are also examined. To ensure reasonable accuracy and numerical convergence, the atomic interaction up to the second-nearest neighbor is considered.