Methods and Approaches for Behavior Analysis of Fractal and Chaotic Components of Cyclic Trajectories of Nonlinear Dynamical Systems

G. Vostrov, A. Khrinenko
{"title":"Methods and Approaches for Behavior Analysis of Fractal and Chaotic Components of Cyclic Trajectories of Nonlinear Dynamical Systems","authors":"G. Vostrov, A. Khrinenko","doi":"10.1109/ELIT53502.2021.9501125","DOIUrl":null,"url":null,"abstract":"This paper considers the processes in maps, which are examples of nonlinear dynamical systems. Analysing dynamical systems, it is necessary to take into account and analyze properties of iterative functions that determine the length of nonrepetitive iterative process. It is shown that not only properties of functions, but also properties of numbers from the considered functions domain influence the nonlinear maps behavior.","PeriodicalId":164798,"journal":{"name":"2021 IEEE 12th International Conference on Electronics and Information Technologies (ELIT)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 12th International Conference on Electronics and Information Technologies (ELIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELIT53502.2021.9501125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers the processes in maps, which are examples of nonlinear dynamical systems. Analysing dynamical systems, it is necessary to take into account and analyze properties of iterative functions that determine the length of nonrepetitive iterative process. It is shown that not only properties of functions, but also properties of numbers from the considered functions domain influence the nonlinear maps behavior.
非线性动力系统循环轨迹分形和混沌分量的行为分析方法与途径
本文考虑映射中的过程,这是非线性动力系统的一个例子。在分析动力系统时,必须考虑和分析决定非重复迭代过程长度的迭代函数的性质。结果表明,不仅函数的性质会影响非线性映射的行为,而且所考虑的函数域上的数的性质也会影响非线性映射的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信