Daping Li, Ji-guang Wan, Jun Wang, Jian Zhou, Kai Lu, Peng Xu, Fei Wu, C. Xie
{"title":"Disperse Access Considered Energy Inefficiency in Intel Optane DC Persistent Memory Servers","authors":"Daping Li, Ji-guang Wan, Jun Wang, Jian Zhou, Kai Lu, Peng Xu, Fei Wu, C. Xie","doi":"10.1109/ICDCS47774.2020.00107","DOIUrl":null,"url":null,"abstract":"The Intel Optane DC Persistent Memory Module (AEP), which is the first commercial available Non-Volatile Memory (NVM) product, offers comparable performance with DRAM while providing larger capacities and data persistence. Existing researches that substitute NVM with DRAM or hybridize them are either emulator-based or focused on how to improve the energy efficiency for writes. Unfortunately, the energy efficiency of the real AEP system is less explored. Based on real AEP, we observe that even though eliminating the DRAM-like refresh energy consumptions, AEP consumes significant different energy at different performance levels. Specifically, requests with time intervals (dispersed) underperform in both performance and energy efficiency when compared with the case of requests without time intervals (compact). This disparity and parallelism exploitation potentials motivate us to propose Sprint-AEP, an energy-efficiency-oriented scheduling method for AEP-equipped servers. Sprint-AEP fully activates adequate AEPs to serve most of the requests by deferring the write requests and prefetching the hottest data. The remaining AEPs will stay in idle mode with a low idle power to save energy. Besides, we also utilize the read parallelism to accelerate the sync and prefetching processes. Compared with energy-unaware AEP usages, our experimental results show that Sprint-AEP saves up to 26% energy with little performance degradation.","PeriodicalId":158630,"journal":{"name":"2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS47774.2020.00107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The Intel Optane DC Persistent Memory Module (AEP), which is the first commercial available Non-Volatile Memory (NVM) product, offers comparable performance with DRAM while providing larger capacities and data persistence. Existing researches that substitute NVM with DRAM or hybridize them are either emulator-based or focused on how to improve the energy efficiency for writes. Unfortunately, the energy efficiency of the real AEP system is less explored. Based on real AEP, we observe that even though eliminating the DRAM-like refresh energy consumptions, AEP consumes significant different energy at different performance levels. Specifically, requests with time intervals (dispersed) underperform in both performance and energy efficiency when compared with the case of requests without time intervals (compact). This disparity and parallelism exploitation potentials motivate us to propose Sprint-AEP, an energy-efficiency-oriented scheduling method for AEP-equipped servers. Sprint-AEP fully activates adequate AEPs to serve most of the requests by deferring the write requests and prefetching the hottest data. The remaining AEPs will stay in idle mode with a low idle power to save energy. Besides, we also utilize the read parallelism to accelerate the sync and prefetching processes. Compared with energy-unaware AEP usages, our experimental results show that Sprint-AEP saves up to 26% energy with little performance degradation.