Forecasting Aggregate Demand: Analytical Comparison of Top-Down and Bottom-Up Approaches in a Multivariate Exponential Smoothing Framework

G. Sbrana, A. Silvestrini
{"title":"Forecasting Aggregate Demand: Analytical Comparison of Top-Down and Bottom-Up Approaches in a Multivariate Exponential Smoothing Framework","authors":"G. Sbrana, A. Silvestrini","doi":"10.2139/ssrn.2358398","DOIUrl":null,"url":null,"abstract":"Forecasting aggregate demand is a crucial matter in all industrial sectors. In this paper, we provide the analytical prediction properties of top-down (TD) and bottom-up (BU) approaches when forecasting aggregate demand, using multivariate exponential smoothing as demand planning framework. We extend and generalize the results obtained by Widiarta, Viswanathan and Piplani (2009) by employing an unrestricted multivariate framework allowing for interdependency between the variables. Moreover, we establish the necessary and sufficient condition for the equality of mean squared errors (MSEs) of the two approaches. We show that the condition for the equality of MSEs also holds even when the moving average parameters of the individual components are not identical. In addition, we show that the relative forecasting accuracy of TD and BU depends on the parametric structure of the underlying framework. Simulation results confirm our theoretical findings. Indeed, the ranking of TD and BU forecasts is led by the parametric structure of the underlying data generation process, regardless of possible misspecification issues.","PeriodicalId":404679,"journal":{"name":"ERN: Forecasting & Simulation (Consumption) (Topic)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"146","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Forecasting & Simulation (Consumption) (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2358398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 146

Abstract

Forecasting aggregate demand is a crucial matter in all industrial sectors. In this paper, we provide the analytical prediction properties of top-down (TD) and bottom-up (BU) approaches when forecasting aggregate demand, using multivariate exponential smoothing as demand planning framework. We extend and generalize the results obtained by Widiarta, Viswanathan and Piplani (2009) by employing an unrestricted multivariate framework allowing for interdependency between the variables. Moreover, we establish the necessary and sufficient condition for the equality of mean squared errors (MSEs) of the two approaches. We show that the condition for the equality of MSEs also holds even when the moving average parameters of the individual components are not identical. In addition, we show that the relative forecasting accuracy of TD and BU depends on the parametric structure of the underlying framework. Simulation results confirm our theoretical findings. Indeed, the ranking of TD and BU forecasts is led by the parametric structure of the underlying data generation process, regardless of possible misspecification issues.
预测总需求:多元指数平滑框架中自上而下与自下而上方法的分析比较
预测总需求是所有工业部门的关键问题。本文以多元指数平滑作为需求规划框架,给出了自上而下(TD)和自下而上(BU)方法在预测总需求时的分析预测特性。我们通过采用允许变量之间相互依赖的不受限制的多变量框架,扩展和推广了Widiarta, Viswanathan和Piplani(2009)获得的结果。并给出了两种方法均方误差相等的充分必要条件。我们表明,即使单个成分的移动平均参数不相同,mse相等的条件也成立。此外,我们还证明了TD和BU的相对预测精度取决于底层框架的参数结构。仿真结果证实了我们的理论发现。事实上,TD和BU预测的排序是由底层数据生成过程的参数结构主导的,而不考虑可能存在的规格错误问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信