Quantum Transfer Learning for Diagnosis of Diabetic Retinopathy

S. S, K. T, Sayantan Bhattacharjee, Durri Shahwar, K. S. Sekhar Reddy
{"title":"Quantum Transfer Learning for Diagnosis of Diabetic Retinopathy","authors":"S. S, K. T, Sayantan Bhattacharjee, Durri Shahwar, K. S. Sekhar Reddy","doi":"10.1109/ICITIIT54346.2022.9744184","DOIUrl":null,"url":null,"abstract":"India is on track to become the world’s diabetes capital thus demanding accurate diagnosis of Diabetic retinopathy from optical coherence tomography (OCT) retinal images. Accurate and faster diagnosis is difficult as it depends on quality of image, operator handling and also the growing number of patients. In this paper we propose the use of quantum transfer learning model to accomplish diagnosis of Diabetic Retinopathy. Quantum Transfer Learning (QTL), is a hybrid combination of classical transfer learning and quantum computing. Unlike classical computers, quantum computers provide faster computation and better accuracy. The concept of QTL is mainly used where the dataset size is limited. The QTL model, diagnostically significant image features are extracted with Resnet18 Convolutional Neural NEtwork (CNN) model, which is reduced to 4-bit feature vector to be encoded as qubit and is finally classified by utilizing Variational Quantum Circuit (VQC). The proposed model gave a better accuracy than existing state of the art methods in terms of high accuracy despite with a smaller set of images in the training phase.","PeriodicalId":184353,"journal":{"name":"2022 International Conference on Innovative Trends in Information Technology (ICITIIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Innovative Trends in Information Technology (ICITIIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITIIT54346.2022.9744184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

India is on track to become the world’s diabetes capital thus demanding accurate diagnosis of Diabetic retinopathy from optical coherence tomography (OCT) retinal images. Accurate and faster diagnosis is difficult as it depends on quality of image, operator handling and also the growing number of patients. In this paper we propose the use of quantum transfer learning model to accomplish diagnosis of Diabetic Retinopathy. Quantum Transfer Learning (QTL), is a hybrid combination of classical transfer learning and quantum computing. Unlike classical computers, quantum computers provide faster computation and better accuracy. The concept of QTL is mainly used where the dataset size is limited. The QTL model, diagnostically significant image features are extracted with Resnet18 Convolutional Neural NEtwork (CNN) model, which is reduced to 4-bit feature vector to be encoded as qubit and is finally classified by utilizing Variational Quantum Circuit (VQC). The proposed model gave a better accuracy than existing state of the art methods in terms of high accuracy despite with a smaller set of images in the training phase.
量子迁移学习在糖尿病视网膜病变诊断中的应用
印度正在成为世界糖尿病之都,因此需要通过光学相干断层扫描(OCT)视网膜图像准确诊断糖尿病视网膜病变。准确和快速的诊断是困难的,因为它取决于图像的质量,操作员的处理和越来越多的患者。本文提出利用量子迁移学习模型来完成糖尿病视网膜病变的诊断。量子迁移学习(QTL)是经典迁移学习和量子计算的结合。与传统计算机不同,量子计算机提供更快的计算速度和更高的精度。QTL的概念主要用于数据集大小有限的地方。在QTL模型中,利用Resnet18卷积神经网络(CNN)模型提取具有诊断意义的图像特征,将其约简为4位特征向量编码为量子位,最后利用变分量子电路(VQC)进行分类。尽管在训练阶段使用的图像集较少,但该模型在高准确率方面比现有的技术方法具有更好的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信