A hierarchical feedforward adaptive filter for system identification

Christos Boukis, D. Mandic, A. Constantinides
{"title":"A hierarchical feedforward adaptive filter for system identification","authors":"Christos Boukis, D. Mandic, A. Constantinides","doi":"10.1109/NNSP.2002.1030038","DOIUrl":null,"url":null,"abstract":"An architecture for adaptive filtering based upon the previously introduced hierarchical least mean square algorithm is proposed. This pyramidal architecture incorporates sparse connections between the architectural layers with a certain variable degree of overlapping between the neighboring subfilters of the same level. A learning algorithm for this class of structures is derived, based on the back-propagation algorithm for temporal feedforward networks with linear neurons. Further, a class of normalized algorithms for this class is derived. The analysis and simulations show the proposed algorithms outperform the existing ones.","PeriodicalId":117945,"journal":{"name":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2002.1030038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

An architecture for adaptive filtering based upon the previously introduced hierarchical least mean square algorithm is proposed. This pyramidal architecture incorporates sparse connections between the architectural layers with a certain variable degree of overlapping between the neighboring subfilters of the same level. A learning algorithm for this class of structures is derived, based on the back-propagation algorithm for temporal feedforward networks with linear neurons. Further, a class of normalized algorithms for this class is derived. The analysis and simulations show the proposed algorithms outperform the existing ones.
一种用于系统辨识的分层前馈自适应滤波器
提出了一种基于分层最小均方算法的自适应滤波结构。这种金字塔结构结合了建筑层之间的稀疏连接,并在同一层的相邻子过滤器之间具有一定的可变程度的重叠。基于线性神经元时间前馈网络的反向传播算法,导出了这类结构的学习算法。进一步,导出了该类的一类规范化算法。分析和仿真结果表明,所提算法优于现有算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信