Proposing a Numerical Solution for the 3D Heat Conduction Equation

Mansour Al Qubeissi
{"title":"Proposing a Numerical Solution for the 3D Heat Conduction Equation","authors":"Mansour Al Qubeissi","doi":"10.1109/AMS.2012.10","DOIUrl":null,"url":null,"abstract":"The current paper presents a numerical technique in solving the 3D heat conduction equation. The Finite Volume method is used in the discretisation scheme. Gauss's theorem has also been employed for solving the integral parts of the general heat conduction equation in solving problems of steady and unsteady states. The proposed technique is applicable to unstructured (tetrahedral) elements for dealing with domains of complex geometries. The validation cases of the developed, FORTRAN based, heat conduction code in 1D, 2D and 3D representations have been reviewed with a grid independence check. Comparisons to the available exact solution and a commercial software solver are attached to the manuscript.","PeriodicalId":407900,"journal":{"name":"2012 Sixth Asia Modelling Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Sixth Asia Modelling Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMS.2012.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The current paper presents a numerical technique in solving the 3D heat conduction equation. The Finite Volume method is used in the discretisation scheme. Gauss's theorem has also been employed for solving the integral parts of the general heat conduction equation in solving problems of steady and unsteady states. The proposed technique is applicable to unstructured (tetrahedral) elements for dealing with domains of complex geometries. The validation cases of the developed, FORTRAN based, heat conduction code in 1D, 2D and 3D representations have been reviewed with a grid independence check. Comparisons to the available exact solution and a commercial software solver are attached to the manuscript.
提出了三维热传导方程的数值解
本文提出了一种求解三维热传导方程的数值方法。离散化方案采用有限体积法。高斯定理也被用于求解一般热传导方程的积分部分,以解决稳态和非稳态问题。该方法适用于非结构化(四面体)元素的复杂几何域处理。已开发的基于FORTRAN的热传导代码在1D, 2D和3D表示中的验证案例已经通过网格独立性检查进行了审查。与可用的精确解和商业软件求解器的比较附在手稿上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信