invis: Exploring high-dimensional RNA sequences from in vitro selection

Çağatay Demiralp, Eric J. Hayden, Jeff Hammerbacher, Jeffrey Heer
{"title":"invis: Exploring high-dimensional RNA sequences from in vitro selection","authors":"Çağatay Demiralp, Eric J. Hayden, Jeff Hammerbacher, Jeffrey Heer","doi":"10.1109/BIOVIS.2013.6664340","DOIUrl":null,"url":null,"abstract":"In vitro selection and evolution is a powerful method for discovering RNA molecules based on their binding and catalysis properties. It has important applications to the study of genetic variation and molecular evolution. However, the resulting RNA sequences form a large, high-dimensional space and biologists lack adequate tools to explore and interpret these sequences. We present invis, the first visual analysis tool to facilitate exploration of in vitro selection sequence spaces. invis introduces a novel configuration of coordinated views that enables simultaneous inspection of global projections of sequence data alongside local regions of selected dimensions and sequence clusters. It allows scientists to isolate related sequences for further data analysis, compare sequence populations over varying conditions, filter sequences based on their similarities, and visualize likely pathways of genetic evolution. User feedback indicates that invis enables effective exploration of in vitro RNA selection sequences.","PeriodicalId":356842,"journal":{"name":"2013 IEEE Symposium on Biological Data Visualization (BioVis)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Symposium on Biological Data Visualization (BioVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOVIS.2013.6664340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In vitro selection and evolution is a powerful method for discovering RNA molecules based on their binding and catalysis properties. It has important applications to the study of genetic variation and molecular evolution. However, the resulting RNA sequences form a large, high-dimensional space and biologists lack adequate tools to explore and interpret these sequences. We present invis, the first visual analysis tool to facilitate exploration of in vitro selection sequence spaces. invis introduces a novel configuration of coordinated views that enables simultaneous inspection of global projections of sequence data alongside local regions of selected dimensions and sequence clusters. It allows scientists to isolate related sequences for further data analysis, compare sequence populations over varying conditions, filter sequences based on their similarities, and visualize likely pathways of genetic evolution. User feedback indicates that invis enables effective exploration of in vitro RNA selection sequences.
从体外选择探索高维RNA序列
体外选择和进化是基于RNA分子的结合和催化特性发现RNA分子的有力方法。它在遗传变异和分子进化的研究中具有重要的应用价值。然而,由此产生的RNA序列形成了一个大的、高维的空间,生物学家缺乏足够的工具来探索和解释这些序列。我们提出invis,第一个可视化分析工具,以促进探索体外选择序列空间。Invis引入了一种新的协调视图配置,可以同时检查序列数据的全局投影以及选定维度和序列簇的局部区域。它允许科学家分离相关序列进行进一步的数据分析,比较不同条件下的序列群体,根据相似性过滤序列,并可视化可能的遗传进化途径。用户反馈表明,invis能够有效地探索体外RNA选择序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信