Action Recognition Using Sparse Representation on Covariance Manifolds of Optical Flow

Kai Guo, P. Ishwar, J. Konrad
{"title":"Action Recognition Using Sparse Representation on Covariance Manifolds of Optical Flow","authors":"Kai Guo, P. Ishwar, J. Konrad","doi":"10.1109/AVSS.2010.71","DOIUrl":null,"url":null,"abstract":"A novel approach to action recognition in video based onthe analysis of optical flow is presented. Properties of opticalflow useful for action recognition are captured usingonly the empirical covariance matrix of a bag of featuressuch as flow velocity, gradient, and divergence. The featurecovariance matrix is a low-dimensional representationof video dynamics that belongs to a Riemannian manifold.The Riemannian manifold of covariance matrices is transformedinto the vector space of symmetric matrices underthe matrix logarithm mapping. The log-covariance matrixof a test action segment is approximated by a sparse linearcombination of the log-covariance matrices of training actionsegments using a linear program and the coefficients ofthe sparse linear representation are used to recognize actions.This approach based on the unique blend of a logcovariance-descriptor and a sparse linear representation istested on the Weizmann and KTH datasets. The proposedapproach attains leave-one-out cross validation scores of94.4% correct classification rate for the Weizmann datasetand 98.5% for the KTH dataset. Furthermore, the methodis computationally efficient and easy to implement.","PeriodicalId":415758,"journal":{"name":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"176","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2010.71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 176

Abstract

A novel approach to action recognition in video based onthe analysis of optical flow is presented. Properties of opticalflow useful for action recognition are captured usingonly the empirical covariance matrix of a bag of featuressuch as flow velocity, gradient, and divergence. The featurecovariance matrix is a low-dimensional representationof video dynamics that belongs to a Riemannian manifold.The Riemannian manifold of covariance matrices is transformedinto the vector space of symmetric matrices underthe matrix logarithm mapping. The log-covariance matrixof a test action segment is approximated by a sparse linearcombination of the log-covariance matrices of training actionsegments using a linear program and the coefficients ofthe sparse linear representation are used to recognize actions.This approach based on the unique blend of a logcovariance-descriptor and a sparse linear representation istested on the Weizmann and KTH datasets. The proposedapproach attains leave-one-out cross validation scores of94.4% correct classification rate for the Weizmann datasetand 98.5% for the KTH dataset. Furthermore, the methodis computationally efficient and easy to implement.
基于稀疏表示的光流协方差流形动作识别
提出了一种基于光流分析的视频动作识别新方法。对动作识别有用的光流特性仅使用一组特征(如流速、梯度和散度)的经验协方差矩阵来捕获。特征协方差矩阵是视频动态的低维表示,属于黎曼流形。在矩阵对数映射下,将协方差矩阵的黎曼流形变换为对称矩阵的向量空间。测试动作段的对数协方差矩阵由训练动作段的对数协方差矩阵的稀疏线性组合近似,并使用稀疏线性表示的系数来识别动作。该方法基于log协方差描述符和Weizmann和KTH数据集上列出的稀疏线性表示的独特混合。该方法对Weizmann数据集和KTH数据集的分类正确率分别达到了94.4%和98.5%。此外,该方法计算效率高,易于实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信