{"title":"Action Recognition Using Sparse Representation on Covariance Manifolds of Optical Flow","authors":"Kai Guo, P. Ishwar, J. Konrad","doi":"10.1109/AVSS.2010.71","DOIUrl":null,"url":null,"abstract":"A novel approach to action recognition in video based onthe analysis of optical flow is presented. Properties of opticalflow useful for action recognition are captured usingonly the empirical covariance matrix of a bag of featuressuch as flow velocity, gradient, and divergence. The featurecovariance matrix is a low-dimensional representationof video dynamics that belongs to a Riemannian manifold.The Riemannian manifold of covariance matrices is transformedinto the vector space of symmetric matrices underthe matrix logarithm mapping. The log-covariance matrixof a test action segment is approximated by a sparse linearcombination of the log-covariance matrices of training actionsegments using a linear program and the coefficients ofthe sparse linear representation are used to recognize actions.This approach based on the unique blend of a logcovariance-descriptor and a sparse linear representation istested on the Weizmann and KTH datasets. The proposedapproach attains leave-one-out cross validation scores of94.4% correct classification rate for the Weizmann datasetand 98.5% for the KTH dataset. Furthermore, the methodis computationally efficient and easy to implement.","PeriodicalId":415758,"journal":{"name":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"176","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2010.71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 176
Abstract
A novel approach to action recognition in video based onthe analysis of optical flow is presented. Properties of opticalflow useful for action recognition are captured usingonly the empirical covariance matrix of a bag of featuressuch as flow velocity, gradient, and divergence. The featurecovariance matrix is a low-dimensional representationof video dynamics that belongs to a Riemannian manifold.The Riemannian manifold of covariance matrices is transformedinto the vector space of symmetric matrices underthe matrix logarithm mapping. The log-covariance matrixof a test action segment is approximated by a sparse linearcombination of the log-covariance matrices of training actionsegments using a linear program and the coefficients ofthe sparse linear representation are used to recognize actions.This approach based on the unique blend of a logcovariance-descriptor and a sparse linear representation istested on the Weizmann and KTH datasets. The proposedapproach attains leave-one-out cross validation scores of94.4% correct classification rate for the Weizmann datasetand 98.5% for the KTH dataset. Furthermore, the methodis computationally efficient and easy to implement.