Short-Term Network Traffic Prediction with Multilayer Perceptron

Agnieszka Ganowicz, Bartosz Starosta, Aleksandra Knapińska, K. Walkowiak
{"title":"Short-Term Network Traffic Prediction with Multilayer Perceptron","authors":"Agnieszka Ganowicz, Bartosz Starosta, Aleksandra Knapińska, K. Walkowiak","doi":"10.1109/SLAAI-ICAI56923.2022.10002431","DOIUrl":null,"url":null,"abstract":"The constantly increasing internet traffic and rising network requirements trigger fast development and implementation of new networking architectures and technologies. Predictability of network traffic can bring significant benefits in many areas, such as network planning, network security, dynamic bandwidth allocation, and predictive congestion control. This paper studies the problem of short-term traffic forecasting in application-aware backbone optical networks. The proposed method is based on the Multilayer Perceptron (mlp). Multiple neural network architectures are evaluated using three datasets with diverse characteristics, representing different types of internet traffic in a real-world backbone network. An extensive examination is performed to find the best neural network architecture for each traffic type. The proposed method revealed high prediction quality, achieving the mean absolute percentage errors between 2% and 10%, depending on the traffic type. The proposed neural networks outperform the baseline regression model in all considered types of traffic.","PeriodicalId":308901,"journal":{"name":"2022 6th SLAAI International Conference on Artificial Intelligence (SLAAI-ICAI)","volume":"47 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th SLAAI International Conference on Artificial Intelligence (SLAAI-ICAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLAAI-ICAI56923.2022.10002431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The constantly increasing internet traffic and rising network requirements trigger fast development and implementation of new networking architectures and technologies. Predictability of network traffic can bring significant benefits in many areas, such as network planning, network security, dynamic bandwidth allocation, and predictive congestion control. This paper studies the problem of short-term traffic forecasting in application-aware backbone optical networks. The proposed method is based on the Multilayer Perceptron (mlp). Multiple neural network architectures are evaluated using three datasets with diverse characteristics, representing different types of internet traffic in a real-world backbone network. An extensive examination is performed to find the best neural network architecture for each traffic type. The proposed method revealed high prediction quality, achieving the mean absolute percentage errors between 2% and 10%, depending on the traffic type. The proposed neural networks outperform the baseline regression model in all considered types of traffic.
基于多层感知机的短期网络流量预测
不断增长的互联网流量和不断增长的网络需求引发了新的网络架构和技术的快速发展和实施。网络流量的可预测性可以在许多领域带来显著的好处,例如网络规划、网络安全、动态带宽分配和预测拥塞控制。研究了应用感知型骨干光网络的短期流量预测问题。该方法基于多层感知器(mlp)。使用具有不同特征的三个数据集对多个神经网络架构进行了评估,这些数据集代表了现实世界骨干网中不同类型的互联网流量。为了找到每种流量类型的最佳神经网络架构,进行了广泛的检查。该方法显示了较高的预测质量,根据流量类型的不同,平均绝对百分比误差在2%到10%之间。所提出的神经网络在所有考虑的流量类型中都优于基线回归模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信