An Improved DBSCAN Clustering Algorithm for Multi-density Datasets

Tang Cheng
{"title":"An Improved DBSCAN Clustering Algorithm for Multi-density Datasets","authors":"Tang Cheng","doi":"10.1145/3144789.3144808","DOIUrl":null,"url":null,"abstract":"In this paper, we proposed a DBSCAN-based clustering algorithm called NNDD-DBSCAN with the main focus of handling multi-density datasets and reducing parameter sensitivity. The NNDD-DBSCAN used a new distance measuring method called nearest neighbor density distance (NNDD) which makes the new algorithm can clustering properly in multi-density datasets. By analyzing the relationship between the threshold of nearest neighbor density distance and the threshold of nearest neighborcollection, we give a heuristic method to find the appropriate nearest neighbor density distance threshold and reducing parameter sensitivity. Experimental results show that the NNDD-DBSCAN has a good robustadaptation and can get the ideal clustering result both in single density datasets and multi-density datasets.","PeriodicalId":254163,"journal":{"name":"Proceedings of the 2nd International Conference on Intelligent Information Processing","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Conference on Intelligent Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3144789.3144808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, we proposed a DBSCAN-based clustering algorithm called NNDD-DBSCAN with the main focus of handling multi-density datasets and reducing parameter sensitivity. The NNDD-DBSCAN used a new distance measuring method called nearest neighbor density distance (NNDD) which makes the new algorithm can clustering properly in multi-density datasets. By analyzing the relationship between the threshold of nearest neighbor density distance and the threshold of nearest neighborcollection, we give a heuristic method to find the appropriate nearest neighbor density distance threshold and reducing parameter sensitivity. Experimental results show that the NNDD-DBSCAN has a good robustadaptation and can get the ideal clustering result both in single density datasets and multi-density datasets.
一种改进的多密度数据集DBSCAN聚类算法
本文提出了一种基于dbscan的聚类算法ndd - dbscan,主要关注处理多密度数据集和降低参数敏感性。NNDD- dbscan采用了一种新的距离测量方法——最近邻密度距离(NNDD),使得新算法能够在多密度数据集上正确聚类。通过分析最近邻密度距离阈值与最近邻集合阈值之间的关系,给出了一种寻找合适的最近邻密度距离阈值并降低参数灵敏度的启发式方法。实验结果表明,ndd - dbscan具有良好的鲁棒自适应能力,无论在单密度数据集还是多密度数据集上都能获得理想的聚类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信