Sensor-assisted Monte Carlo localization for Wireless Sensor Networks

Salke Hartung, S. Taheri, D. Hogrefe
{"title":"Sensor-assisted Monte Carlo localization for Wireless Sensor Networks","authors":"Salke Hartung, S. Taheri, D. Hogrefe","doi":"10.1109/CYBER.2014.6917464","DOIUrl":null,"url":null,"abstract":"Localization in Wireless Sensor Networks (WSNs) denotes the procedure of a single sensor node to determine its geographical position in space. As these nodes are limited in computational power, battery lifetime and communication range, there is the requirement for efficient localization algorithms which is an ongoing topic in research. Nearly all algorithms are based on the usage of seed nodes which are aware of their location and help other nodes approximating their own position. In this paper we extend an existing Monte Carlo particle filter approach (Monte Carlo Localization, MCL) to account for situations where the degree of seed nodes is low, i.e. the location estimation of a node cannot be updated. For this purpose we make use of comparatively cheap sensors to determine the movement direction and velocity of a node. With this obtained information we can update a nodes recent position estimation even in the absence of seed nodes. We simulate our approach and compare our results to the originally proposed algorithm, MCL.","PeriodicalId":183401,"journal":{"name":"The 4th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 4th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBER.2014.6917464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Localization in Wireless Sensor Networks (WSNs) denotes the procedure of a single sensor node to determine its geographical position in space. As these nodes are limited in computational power, battery lifetime and communication range, there is the requirement for efficient localization algorithms which is an ongoing topic in research. Nearly all algorithms are based on the usage of seed nodes which are aware of their location and help other nodes approximating their own position. In this paper we extend an existing Monte Carlo particle filter approach (Monte Carlo Localization, MCL) to account for situations where the degree of seed nodes is low, i.e. the location estimation of a node cannot be updated. For this purpose we make use of comparatively cheap sensors to determine the movement direction and velocity of a node. With this obtained information we can update a nodes recent position estimation even in the absence of seed nodes. We simulate our approach and compare our results to the originally proposed algorithm, MCL.
无线传感器网络的传感器辅助蒙特卡罗定位
无线传感器网络中的定位是指单个传感器节点确定其在空间中的地理位置的过程。由于这些节点的计算能力、电池寿命和通信范围有限,因此需要高效的定位算法,这是一个正在进行的研究课题。几乎所有的算法都基于种子节点的使用,种子节点知道自己的位置,并帮助其他节点逼近自己的位置。在本文中,我们扩展了现有的蒙特卡罗粒子滤波方法(蒙特卡罗定位,MCL)来考虑种子节点的程度较低的情况,即节点的位置估计无法更新。为此,我们使用相对便宜的传感器来确定节点的运动方向和速度。利用这些信息,即使在没有种子节点的情况下,我们也可以更新节点最近的位置估计。我们模拟了我们的方法,并将我们的结果与最初提出的算法MCL进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信