Signal detection and BER analysis for RF-powered devices utilizing ambient backscatter

K. Lu, Gongpu Wang, Fengzhong Qu, Z. Zhong
{"title":"Signal detection and BER analysis for RF-powered devices utilizing ambient backscatter","authors":"K. Lu, Gongpu Wang, Fengzhong Qu, Z. Zhong","doi":"10.1109/WCSP.2015.7341107","DOIUrl":null,"url":null,"abstract":"Devices that harvest power from radio-frequency (RF) signals are generally referred to as RF-powered devices. One emerging technology that enables RF-powered devices to communicate with others is ambient backscatter. In this paper, we study the problem of signal detection and analyse the uplink bit error rate (BER) performance for RF-powered devices utilizing ambient backscatter. Specifically, we build up a theoretical model for a communication system which consists of one reader and one tag. The tag employs ambient backscatter to communicate with the reader. Next we design an optimal detector which can minimize the BER and find the closed-form expression for the detection threshold. Noting that the optimal detector cannot result in equal BERs in detect “0” or “1”, therefore we design another detector that can achieve the same error probability in detecting “0” with that in detecting “1”. Moreover, we analyse the BER performance for both detectors. Finally, simulations are provided to corroborate the proposed studies.","PeriodicalId":164776,"journal":{"name":"2015 International Conference on Wireless Communications & Signal Processing (WCSP)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Wireless Communications & Signal Processing (WCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCSP.2015.7341107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

Abstract

Devices that harvest power from radio-frequency (RF) signals are generally referred to as RF-powered devices. One emerging technology that enables RF-powered devices to communicate with others is ambient backscatter. In this paper, we study the problem of signal detection and analyse the uplink bit error rate (BER) performance for RF-powered devices utilizing ambient backscatter. Specifically, we build up a theoretical model for a communication system which consists of one reader and one tag. The tag employs ambient backscatter to communicate with the reader. Next we design an optimal detector which can minimize the BER and find the closed-form expression for the detection threshold. Noting that the optimal detector cannot result in equal BERs in detect “0” or “1”, therefore we design another detector that can achieve the same error probability in detecting “0” with that in detecting “1”. Moreover, we analyse the BER performance for both detectors. Finally, simulations are provided to corroborate the proposed studies.
利用环境反向散射的射频供电设备的信号检测和误码率分析
从射频(RF)信号中获取能量的设备通常被称为射频供电设备。一项使射频供电设备能够与其他设备通信的新兴技术是环境反向散射。在本文中,我们研究了信号检测问题,并分析了射频供电设备的上行误码率(BER)性能。具体来说,我们建立了一个由一个阅读器和一个标签组成的通信系统的理论模型。该标签利用环境反向散射与阅读器通信。其次,我们设计了一个能使误码率最小化的最优检测器,并找到了检测阈值的封闭表达式。注意到最优检测器在检测“0”和“1”时不能产生相等的ber,因此我们设计了另一个检测器,使其在检测“0”时的错误概率与检测“1”时的错误概率相同。此外,我们还分析了两种检测器的误码率性能。最后,提供了模拟来证实所提出的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信