Modelling of nonlinear systems by feedforward and recurrent neural networks

Weichun Yu
{"title":"Modelling of nonlinear systems by feedforward and recurrent neural networks","authors":"Weichun Yu","doi":"10.1109/CCECE.1995.526280","DOIUrl":null,"url":null,"abstract":"Two types of artificial neural networks are studied in this paper in modelling nonlinear dynamical systems: a feedforward neural network and a recurrent neural network. When the feedforward network is used to model a dynamical system, the inputs to network include the past inputs and outputs of the plant in addition to the present input to the plant. Suitable number of past inputs and outputs depends on the assumption on model structure. For the recurrent network with a hybrid (feedforward and feedback) structure, explicit use of past inputs and outputs is not necessary for modelling since their effects are captured by the network internal states. Simulation results clearly illustrate the difference between the capability of the two networks in detecting system structures which are implicitly contained in the input-output data.","PeriodicalId":158581,"journal":{"name":"Proceedings 1995 Canadian Conference on Electrical and Computer Engineering","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1995 Canadian Conference on Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE.1995.526280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Two types of artificial neural networks are studied in this paper in modelling nonlinear dynamical systems: a feedforward neural network and a recurrent neural network. When the feedforward network is used to model a dynamical system, the inputs to network include the past inputs and outputs of the plant in addition to the present input to the plant. Suitable number of past inputs and outputs depends on the assumption on model structure. For the recurrent network with a hybrid (feedforward and feedback) structure, explicit use of past inputs and outputs is not necessary for modelling since their effects are captured by the network internal states. Simulation results clearly illustrate the difference between the capability of the two networks in detecting system structures which are implicitly contained in the input-output data.
非线性系统的前馈与递归神经网络建模
本文研究了两类人工神经网络在非线性动力系统建模中的应用:前馈神经网络和递归神经网络。当前馈网络用于动态系统建模时,网络的输入除了包括对象的当前输入外,还包括对象过去的输入和输出。过去输入和输出的合适数量取决于对模型结构的假设。对于具有混合(前馈和反馈)结构的循环网络,明确使用过去的输入和输出对于建模是不必要的,因为它们的效果被网络内部状态捕获。仿真结果清楚地说明了两种网络在检测隐含在输入输出数据中的系统结构方面的能力差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信