S. Mukundan, H. Dhulipati, G. Feng, J. Tjong, N. Kar
{"title":"Modeling and Analysis of Novel Star-Delta Winding Configuration with Odd Slot Numbers for Reduced Space Harmonics Using Winding Function","authors":"S. Mukundan, H. Dhulipati, G. Feng, J. Tjong, N. Kar","doi":"10.1109/IEMDC.2019.8785395","DOIUrl":null,"url":null,"abstract":"Existing literature on 3-phase combined star-delta winding topologies only focuses on even slot numbers or conventional multiples of 6, since they emulate a 6-phase configuration with a phase difference of 30° between the star and delta connected sets. Contrarily, if a turns ratio of √3 can be achieved with proper coil and turns distribution, unconventional odd slot numbers and non-multiples of 6 can be implemented resulting in various possible design solutions with minimum spatial harmonic contents. Therefore, this paper focuses on modeling and analysis of a novel star-delta winding configuration using unconventional odd slot numbers for fractional-slot wound machines towards maximum torque density and reduced space harmonic content. Initially, a generalized analytical model using winding function theory for any slot-pole combination is presented. Furthermore, a comprehensive comparative analysis of a novel odd slot-pole combination and a conventional topology is presented in terms of spatial harmonic contents, saliency, torque density, torque ripple, rated machine efficiency and overall operating speed range.","PeriodicalId":378634,"journal":{"name":"2019 IEEE International Electric Machines & Drives Conference (IEMDC)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Electric Machines & Drives Conference (IEMDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMDC.2019.8785395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Existing literature on 3-phase combined star-delta winding topologies only focuses on even slot numbers or conventional multiples of 6, since they emulate a 6-phase configuration with a phase difference of 30° between the star and delta connected sets. Contrarily, if a turns ratio of √3 can be achieved with proper coil and turns distribution, unconventional odd slot numbers and non-multiples of 6 can be implemented resulting in various possible design solutions with minimum spatial harmonic contents. Therefore, this paper focuses on modeling and analysis of a novel star-delta winding configuration using unconventional odd slot numbers for fractional-slot wound machines towards maximum torque density and reduced space harmonic content. Initially, a generalized analytical model using winding function theory for any slot-pole combination is presented. Furthermore, a comprehensive comparative analysis of a novel odd slot-pole combination and a conventional topology is presented in terms of spatial harmonic contents, saliency, torque density, torque ripple, rated machine efficiency and overall operating speed range.