{"title":"Exploiting process lifetime distributions for dynamic load balancing","authors":"Mor Harchol-Balter, A. Downey","doi":"10.1145/224056.225838","DOIUrl":null,"url":null,"abstract":"We measure the distribution of lifetimes for UNIX processes and propose a functional form that fits this distribution well. We use this functional form to derive a policy for preemptive migration, and then use a trace-driven simulator to compare our proposed policy with other preemptive migration policies, and with a non-preemptive load-balancing strategy. We find that, contrary to previous reports, the performance benefits of preemptive migration are significantly greater than those of non-preemptive migration, even when the memory-transfer cost is high. Using a model of migration costs representative of current systems, we find that preemptive migration reduces the mean delay (queueing and migration) by 35% -- 50%, compared to non-preemptive migration.","PeriodicalId":168455,"journal":{"name":"Proceedings of the fifteenth ACM symposium on Operating systems principles","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"397","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the fifteenth ACM symposium on Operating systems principles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/224056.225838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 397
Abstract
We measure the distribution of lifetimes for UNIX processes and propose a functional form that fits this distribution well. We use this functional form to derive a policy for preemptive migration, and then use a trace-driven simulator to compare our proposed policy with other preemptive migration policies, and with a non-preemptive load-balancing strategy. We find that, contrary to previous reports, the performance benefits of preemptive migration are significantly greater than those of non-preemptive migration, even when the memory-transfer cost is high. Using a model of migration costs representative of current systems, we find that preemptive migration reduces the mean delay (queueing and migration) by 35% -- 50%, compared to non-preemptive migration.