Training of Deep Bidirectional Rnns for Hand Motion Filtering Via Multimodal Data Fusion

Soroosh Shahtalebi, S. F. Atashzar, Rajni V. Patel, Arash Mohammadi
{"title":"Training of Deep Bidirectional Rnns for Hand Motion Filtering Via Multimodal Data Fusion","authors":"Soroosh Shahtalebi, S. F. Atashzar, Rajni V. Patel, Arash Mohammadi","doi":"10.1109/GlobalSIP45357.2019.8969080","DOIUrl":null,"url":null,"abstract":"Pathological Hand Tremor (PHT) is one of the most prevalent symptoms of some neurological movement disorders such as Parkinson’s Disease (PD) and Essential Tremor (ET). Characterization, estimation, and extraction of PHT is a crucial requirement for assistive and robotic rehabilitation technologies that aim to counteract or resist PHT as an input noise to the system. In general, research in the literature on the topic of PHT removal can be categorized into two major categories, namely, classic and data-driven methods. Classic techniques use hand-crafted features and statistical processing pipelines to model and then extract the tremor while data-driven approaches are trained based on a sizable dataset to allow a computational model (such as neural networks) learn how to estimate the PHT. Since the availability of large datasets, especially in PHT estimation field is a bottleneck, in this feasibility study, we investigate the possibility of combining different recording modalities of PHT to generate a neural network for this purpose. This work explores the potential of jointly using accelerometer data and gyroscope recordings to produce a larger dataset for training a relatively complex network, which can potentially be extended for a deeper generalization.","PeriodicalId":221378,"journal":{"name":"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP45357.2019.8969080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Pathological Hand Tremor (PHT) is one of the most prevalent symptoms of some neurological movement disorders such as Parkinson’s Disease (PD) and Essential Tremor (ET). Characterization, estimation, and extraction of PHT is a crucial requirement for assistive and robotic rehabilitation technologies that aim to counteract or resist PHT as an input noise to the system. In general, research in the literature on the topic of PHT removal can be categorized into two major categories, namely, classic and data-driven methods. Classic techniques use hand-crafted features and statistical processing pipelines to model and then extract the tremor while data-driven approaches are trained based on a sizable dataset to allow a computational model (such as neural networks) learn how to estimate the PHT. Since the availability of large datasets, especially in PHT estimation field is a bottleneck, in this feasibility study, we investigate the possibility of combining different recording modalities of PHT to generate a neural network for this purpose. This work explores the potential of jointly using accelerometer data and gyroscope recordings to produce a larger dataset for training a relatively complex network, which can potentially be extended for a deeper generalization.
基于多模态数据融合的手部运动滤波深度双向rnn训练
病理性手震颤(PHT)是一些神经运动障碍如帕金森病(PD)和特发性震颤(ET)的最常见症状之一。对于旨在抵消或抵抗PHT作为系统输入噪声的辅助和机器人康复技术来说,表征、估计和提取PHT是一个至关重要的要求。总的来说,文献中关于PHT去除的研究可以分为两大类,即经典方法和数据驱动方法。经典的技术使用手工制作的特征和统计处理管道来建模,然后提取震颤,而数据驱动的方法是基于一个相当大的数据集来训练,以允许计算模型(如神经网络)学习如何估计PHT。由于大数据集的可用性,特别是在PHT估计领域是一个瓶颈,在本可行性研究中,我们研究了将不同的PHT记录方式组合在一起以产生一个神经网络的可能性。这项工作探索了联合使用加速度计数据和陀螺仪记录的潜力,以产生更大的数据集,用于训练相对复杂的网络,这可能会扩展到更深的泛化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信