A Multi-Dimensional Semantic Pseudo-Relevance Feedback Information Retrieval Model

Min Pan, Yu Liu, Quanli Pei, Huixian Mao, Aoqun Jin, Sheng Huang, Yinhan Yang
{"title":"A Multi-Dimensional Semantic Pseudo-Relevance Feedback Information Retrieval Model","authors":"Min Pan, Yu Liu, Quanli Pei, Huixian Mao, Aoqun Jin, Sheng Huang, Yinhan Yang","doi":"10.1109/WI-IAT55865.2022.00141","DOIUrl":null,"url":null,"abstract":"Recently neural information retrieval systems have spurred many successful applications. Retrieval model to obtain a candidate document collection in the first retrieval stage, then use BERT to sort the candidate documents. Generally, the sentence score or paragraph score obtained using BERT is integrated into the document score to get the final ranking result. Semantic similarity is less often used to select query extensions and integrate semantic information into pseudo-relevance feedback. We propose a new strategy in this paper, selecting query extensions with semantic information using the BERT model. Incorporating semantic information weights into traditional pseudo-relevance feedback can better alleviate problems such as word polysemy and multi-word synonymy. Improve the performance of the retrieval system and return more accurate documents. The experimental results demonstrate that the query extensions selected by incorporating semantic information can help return more accurate results and improve the accuracy of the retrieval system, and the results of MAP and P@10 can prove the validity and feasibility of our proposed model.","PeriodicalId":345445,"journal":{"name":"2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT55865.2022.00141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently neural information retrieval systems have spurred many successful applications. Retrieval model to obtain a candidate document collection in the first retrieval stage, then use BERT to sort the candidate documents. Generally, the sentence score or paragraph score obtained using BERT is integrated into the document score to get the final ranking result. Semantic similarity is less often used to select query extensions and integrate semantic information into pseudo-relevance feedback. We propose a new strategy in this paper, selecting query extensions with semantic information using the BERT model. Incorporating semantic information weights into traditional pseudo-relevance feedback can better alleviate problems such as word polysemy and multi-word synonymy. Improve the performance of the retrieval system and return more accurate documents. The experimental results demonstrate that the query extensions selected by incorporating semantic information can help return more accurate results and improve the accuracy of the retrieval system, and the results of MAP and P@10 can prove the validity and feasibility of our proposed model.
多维语义伪相关反馈信息检索模型
近年来,神经信息检索系统获得了许多成功的应用。检索模型在第一检索阶段获得候选文档集合,然后使用BERT对候选文档进行排序。一般情况下,将BERT得到的句子分数或段落分数整合到文档分数中,得到最终的排序结果。语义相似度较少用于选择查询扩展和将语义信息集成到伪相关反馈中。本文提出了一种新的策略,利用BERT模型选择具有语义信息的查询扩展。在传统的伪关联反馈中加入语义信息权重可以更好地缓解词多义和多词同义等问题。提高检索系统的性能,返回更准确的文档。实验结果表明,结合语义信息选择的查询扩展有助于返回更准确的结果,提高检索系统的准确性,MAP和P@10的结果可以证明我们提出的模型的有效性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信