The Speedup Theorem in a Primitive Recursive Framework

A. Asperti
{"title":"The Speedup Theorem in a Primitive Recursive Framework","authors":"A. Asperti","doi":"10.1145/2676724.2693178","DOIUrl":null,"url":null,"abstract":"Blum's speedup theorem is a major theorem in computational complexity, showing the existence of computable functions for which no optimal program can exist: for any speedup function r there exists a function fr such that for any program computing fr we can find an alternative program computing it with the desired speedup r. The main corollary is that algorithmic problems do not have, in general, a inherent complexity. Traditional proofs of the speedup theorem make an essential use of Kleene's fix point theorem to close a suitable diagonal argument. As a consequence, very little is known about its validity in subrecursive settings, where there is no universal machine, and no fixpoints. In this article we discuss an alternative, formal proof of the speedup theorem that allows us to spare the invocation of the fix point theorem and sheds more light on the actual complexity of the function fr.","PeriodicalId":187702,"journal":{"name":"Proceedings of the 2015 Conference on Certified Programs and Proofs","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 Conference on Certified Programs and Proofs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2676724.2693178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Blum's speedup theorem is a major theorem in computational complexity, showing the existence of computable functions for which no optimal program can exist: for any speedup function r there exists a function fr such that for any program computing fr we can find an alternative program computing it with the desired speedup r. The main corollary is that algorithmic problems do not have, in general, a inherent complexity. Traditional proofs of the speedup theorem make an essential use of Kleene's fix point theorem to close a suitable diagonal argument. As a consequence, very little is known about its validity in subrecursive settings, where there is no universal machine, and no fixpoints. In this article we discuss an alternative, formal proof of the speedup theorem that allows us to spare the invocation of the fix point theorem and sheds more light on the actual complexity of the function fr.
原始递归框架中的加速定理
Blum加速定理是计算复杂性中的一个重要定理,它表明存在不存在最优程序的可计算函数:对于任何加速函数r,存在一个函数,使得对于任何程序计算,我们都可以找到一个替代程序,以期望的加速r来计算它。主要推论是算法问题通常不具有固有的复杂性。加速定理的传统证明,本质上是利用Kleene不动点定理来闭合一个合适的对角线辐角。因此,对于其在子递归设置中的有效性知之甚少,因为没有通用机器,也没有固定点。在本文中,我们将讨论加速定理的另一种形式证明,它允许我们避免调用不动点定理,并更清楚地了解函数的实际复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信