Explainable clustering and application to wealth management compliance

Enguerrand Horel, K. Giesecke, Victor Storchan, Naren Chittar
{"title":"Explainable clustering and application to wealth management compliance","authors":"Enguerrand Horel, K. Giesecke, Victor Storchan, Naren Chittar","doi":"10.1145/3383455.3422530","DOIUrl":null,"url":null,"abstract":"Many applications from the financial industry successfully leverage clustering algorithms to reveal meaningful patterns among a vast amount of unstructured financial data. However, these algorithms suffer from a lack of interpretability that is required both at a business and regulatory level. In order to overcome this issue, we propose a novel two-steps method to explain clusters. A classifier is first trained to predict the clusters labels, then the Single Feature Introduction Test (SFTT) method is run on the model to identify the statistically significant features that characterize each cluster. We describe a real wealth management compliance use-case that highlights the necessity of such an interpretable clustering method. We illustrate the performance of the method using simulated data and through an experiment on financial ratios of U.S. companies.","PeriodicalId":447950,"journal":{"name":"Proceedings of the First ACM International Conference on AI in Finance","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First ACM International Conference on AI in Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3383455.3422530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Many applications from the financial industry successfully leverage clustering algorithms to reveal meaningful patterns among a vast amount of unstructured financial data. However, these algorithms suffer from a lack of interpretability that is required both at a business and regulatory level. In order to overcome this issue, we propose a novel two-steps method to explain clusters. A classifier is first trained to predict the clusters labels, then the Single Feature Introduction Test (SFTT) method is run on the model to identify the statistically significant features that characterize each cluster. We describe a real wealth management compliance use-case that highlights the necessity of such an interpretable clustering method. We illustrate the performance of the method using simulated data and through an experiment on financial ratios of U.S. companies.
可解释的聚类及其在财富管理合规中的应用
来自金融行业的许多应用程序成功地利用聚类算法在大量非结构化金融数据中揭示有意义的模式。然而,这些算法在业务和监管层面都缺乏可解释性。为了克服这一问题,我们提出了一种新的两步法来解释聚类。首先训练分类器来预测聚类标签,然后在模型上运行单一特征引入测试(SFTT)方法,以识别表征每个聚类的统计显著特征。我们描述了一个真实的财富管理合规用例,强调了这种可解释聚类方法的必要性。我们使用模拟数据并通过对美国公司财务比率的实验来说明该方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信