Minimum-Bit-Error Rate Tuning for 2D-Pdnp Multitrack Detection

Shanwei Shi, J. Barry
{"title":"Minimum-Bit-Error Rate Tuning for 2D-Pdnp Multitrack Detection","authors":"Shanwei Shi, J. Barry","doi":"10.1109/TMRC49521.2020.9366714","DOIUrl":null,"url":null,"abstract":"A dominant impediment in magnetic recording is pattern-dependent media noise, and its impact will only grow more severe as areal densities increase. The pattern-dependent noise prediction (PDNP) algorithm [1] [2], widely used as an effective strategy for mitigating pattern-dependent media noise in single-track detection, has recently been extended to the multitrack scenario [3]; it uses 2D patterns (spanning multiple tracks) to mitigate both downtrack and crosstrack pattern-dependent noise, based on the architecture shown in Fig. 1. The sampled readback waveforms are filtered by a $2 \\times 2$ MIMO equalizer with coefficients $\\mathbf{C}$, whose output $\\mathbf{y}_{k}=\\left[y_{k}^{(1)}, y_{k}^{(2)}\\right]^{T}$ is passed to a 2D -PDNP multitrack detector. Associated with each 2D bit pattern is a signal level vector $\\mathbf{s}$, a standard deviation diagonal matrix $\\Lambda$, and a set of matrix-valued predictor coefficients $\\mathbf{P}_{0}, \\mathbf{P}_{1}, \\ldots, \\mathbf{P}_{N_{p}-1} $. The branch metric of edge e for the 2D -PDNP Viterbi detector is [3]:","PeriodicalId":131361,"journal":{"name":"2020 IEEE 31st Magnetic Recording Conference (TMRC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 31st Magnetic Recording Conference (TMRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TMRC49521.2020.9366714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A dominant impediment in magnetic recording is pattern-dependent media noise, and its impact will only grow more severe as areal densities increase. The pattern-dependent noise prediction (PDNP) algorithm [1] [2], widely used as an effective strategy for mitigating pattern-dependent media noise in single-track detection, has recently been extended to the multitrack scenario [3]; it uses 2D patterns (spanning multiple tracks) to mitigate both downtrack and crosstrack pattern-dependent noise, based on the architecture shown in Fig. 1. The sampled readback waveforms are filtered by a $2 \times 2$ MIMO equalizer with coefficients $\mathbf{C}$, whose output $\mathbf{y}_{k}=\left[y_{k}^{(1)}, y_{k}^{(2)}\right]^{T}$ is passed to a 2D -PDNP multitrack detector. Associated with each 2D bit pattern is a signal level vector $\mathbf{s}$, a standard deviation diagonal matrix $\Lambda$, and a set of matrix-valued predictor coefficients $\mathbf{P}_{0}, \mathbf{P}_{1}, \ldots, \mathbf{P}_{N_{p}-1} $. The branch metric of edge e for the 2D -PDNP Viterbi detector is [3]:
2D-Pdnp多道检测的最小误码率调整
磁记录的主要障碍是模式相关的介质噪声,其影响只会随着面密度的增加而变得更加严重。模式相关噪声预测(PDNP)算法[1][2]被广泛用作减轻单轨检测中模式相关媒体噪声的有效策略,最近已扩展到多轨场景[3];基于图1所示的架构,它使用2D模式(跨越多个轨道)来减轻下行轨道和交叉轨道模式相关的噪声。采样后的回读波形由一个系数为$\mathbf{C}$的$2 \times 2$ MIMO均衡器滤波,其输出$\mathbf{y}_{k}=\left[y_{k}^{(1)}, y_{k}^{(2)}\right]^{T}$被传递给2D -PDNP多道检测器。与每个2D位模式相关联的是信号电平向量$\mathbf{s}$,标准差对角矩阵$\Lambda$和一组矩阵值预测系数$\mathbf{P}_{0}, \mathbf{P}_{1}, \ldots, \mathbf{P}_{N_{p}-1} $。2D -PDNP Viterbi检测器边缘e的分支度量为[3]:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信