Analysis of the impact of using different diversity functions for the subgroup discovery algorithm NMEEF-SD

C. J. Carmona, P. González, M. J. Jesús, F. Herrera
{"title":"Analysis of the impact of using different diversity functions for the subgroup discovery algorithm NMEEF-SD","authors":"C. J. Carmona, P. González, M. J. Jesús, F. Herrera","doi":"10.1109/GEFS.2011.5949498","DOIUrl":null,"url":null,"abstract":"A main purpose of a multi-objective evolutionary algorithm is to find a good relationship between convergence and diversity of the population. Convergence guides the algorithm to search the optimal solution and diversity tries to avoid a premature stagnation of the search. In multi-objective evolutionary algorithms, diversity has been promoted using different techniques. In this paper, several diversity functions were implemented in NMEEF-SD, an algorithm for the extraction of fuzzy rules in a subgroup discovery task, to analyse the influence of these functions in the evolutionary process. The results show the advantages of the different measures, depending on the intended objective.","PeriodicalId":120918,"journal":{"name":"2011 IEEE 5th International Workshop on Genetic and Evolutionary Fuzzy Systems (GEFS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 5th International Workshop on Genetic and Evolutionary Fuzzy Systems (GEFS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GEFS.2011.5949498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A main purpose of a multi-objective evolutionary algorithm is to find a good relationship between convergence and diversity of the population. Convergence guides the algorithm to search the optimal solution and diversity tries to avoid a premature stagnation of the search. In multi-objective evolutionary algorithms, diversity has been promoted using different techniques. In this paper, several diversity functions were implemented in NMEEF-SD, an algorithm for the extraction of fuzzy rules in a subgroup discovery task, to analyse the influence of these functions in the evolutionary process. The results show the advantages of the different measures, depending on the intended objective.
不同多样性函数对子群发现算法NMEEF-SD的影响分析
多目标进化算法的一个主要目的是在种群的收敛性和多样性之间找到一个良好的关系。收敛性引导算法搜索最优解,多样性试图避免过早的搜索停滞。在多目标进化算法中,使用不同的技术来促进多样性。本文在子群发现任务模糊规则提取算法NMEEF-SD中实现了几个多样性函数,分析了这些函数在进化过程中的影响。结果显示了不同措施的优点,这取决于预期的目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信