C. J. Carmona, P. González, M. J. Jesús, F. Herrera
{"title":"Analysis of the impact of using different diversity functions for the subgroup discovery algorithm NMEEF-SD","authors":"C. J. Carmona, P. González, M. J. Jesús, F. Herrera","doi":"10.1109/GEFS.2011.5949498","DOIUrl":null,"url":null,"abstract":"A main purpose of a multi-objective evolutionary algorithm is to find a good relationship between convergence and diversity of the population. Convergence guides the algorithm to search the optimal solution and diversity tries to avoid a premature stagnation of the search. In multi-objective evolutionary algorithms, diversity has been promoted using different techniques. In this paper, several diversity functions were implemented in NMEEF-SD, an algorithm for the extraction of fuzzy rules in a subgroup discovery task, to analyse the influence of these functions in the evolutionary process. The results show the advantages of the different measures, depending on the intended objective.","PeriodicalId":120918,"journal":{"name":"2011 IEEE 5th International Workshop on Genetic and Evolutionary Fuzzy Systems (GEFS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 5th International Workshop on Genetic and Evolutionary Fuzzy Systems (GEFS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GEFS.2011.5949498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A main purpose of a multi-objective evolutionary algorithm is to find a good relationship between convergence and diversity of the population. Convergence guides the algorithm to search the optimal solution and diversity tries to avoid a premature stagnation of the search. In multi-objective evolutionary algorithms, diversity has been promoted using different techniques. In this paper, several diversity functions were implemented in NMEEF-SD, an algorithm for the extraction of fuzzy rules in a subgroup discovery task, to analyse the influence of these functions in the evolutionary process. The results show the advantages of the different measures, depending on the intended objective.