A Deep-Learning Approach for the Prediction of Mini-Mental State Examination Scores in a Multimodal Longitudinal Study

Ulyana Morar, Harold Martin, Walter Izquierdo, Parisa Forouzannezhad, Elaheh Zarafshan, R. Curiel, M. Roselli, D. Loewenstein, R. Duara, Elona Unger, M. Adjouadi
{"title":"A Deep-Learning Approach for the Prediction of Mini-Mental State Examination Scores in a Multimodal Longitudinal Study","authors":"Ulyana Morar, Harold Martin, Walter Izquierdo, Parisa Forouzannezhad, Elaheh Zarafshan, R. Curiel, M. Roselli, D. Loewenstein, R. Duara, Elona Unger, M. Adjouadi","doi":"10.1109/CSCI51800.2020.00144","DOIUrl":null,"url":null,"abstract":"This study introduces a new multimodal deep regression method to predict cognitive test score in a 5-year longitudinal study on Alzheimer’s disease (AD). The proposed model takes advantage of multimodal data that includes cerebrospinal fluid (CSF) levels of tau and beta-amyloid, structural measures from magnetic resonance imaging (MRI), functional and metabolic measures from positron emission tomography (PET), and cognitive scores from neuropsychological tests (Cog), all with the aim of achieving highly accurate predictions of future Mini-Mental State Examination (MMSE) test scores up to five years after baseline biomarker collection. A novel data augmentation technique is leveraged to increase the numbers of training samples without relying on synthetic data. With the proposed method, the best and most encompassing regressor is shown to achieve better than state-of-the-art correlations of 85.07%(SD=1.59) for 6 months in the future, 87.39% (SD =1.48) for 12 months, 84.78% (SD=2.66) for 18 months, 85.13% (SD=2.19) for 24 months, 81.15% (SD=5.48) for 30 months, 81.17% (SD=4.44) for 36 months, 79.25% (SD=5.85) for 42 months, 78.98% (SD=5.79) for 48 months, 78.93%(SD=5.76) for 54 months, and 74.96% (SD=7.54) for 60 months.","PeriodicalId":336929,"journal":{"name":"2020 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI51800.2020.00144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This study introduces a new multimodal deep regression method to predict cognitive test score in a 5-year longitudinal study on Alzheimer’s disease (AD). The proposed model takes advantage of multimodal data that includes cerebrospinal fluid (CSF) levels of tau and beta-amyloid, structural measures from magnetic resonance imaging (MRI), functional and metabolic measures from positron emission tomography (PET), and cognitive scores from neuropsychological tests (Cog), all with the aim of achieving highly accurate predictions of future Mini-Mental State Examination (MMSE) test scores up to five years after baseline biomarker collection. A novel data augmentation technique is leveraged to increase the numbers of training samples without relying on synthetic data. With the proposed method, the best and most encompassing regressor is shown to achieve better than state-of-the-art correlations of 85.07%(SD=1.59) for 6 months in the future, 87.39% (SD =1.48) for 12 months, 84.78% (SD=2.66) for 18 months, 85.13% (SD=2.19) for 24 months, 81.15% (SD=5.48) for 30 months, 81.17% (SD=4.44) for 36 months, 79.25% (SD=5.85) for 42 months, 78.98% (SD=5.79) for 48 months, 78.93%(SD=5.76) for 54 months, and 74.96% (SD=7.54) for 60 months.
一种深度学习方法在多模态纵向研究中预测心理状态考试分数
本研究介绍了一种新的多模态深度回归方法来预测阿尔茨海默病(AD) 5年纵向研究中的认知测试分数。所提出的模型利用了多模态数据,包括脑脊液(CSF) tau和β -淀粉样蛋白水平、磁共振成像(MRI)的结构测量、正电子发射断层扫描(PET)的功能和代谢测量以及神经心理测试(Cog)的认知评分,所有这些数据的目的都是在基线生物标志物收集后的五年内实现对未来迷你精神状态检查(MMSE)测试分数的高度准确预测。利用一种新的数据增强技术来增加训练样本的数量,而不依赖于合成数据。方法,最好和最包括回归量达到85.07%的比最先进的相关性显示(SD = 1.59)在未来6个月,87.39% (SD = 1.48) 12个月,18个月(SD = 2.66)为84.78%,85.13%为24个月(SD = 2.19), 81.15%为30个月(SD = 5.48), 81.17%为36个月(SD = 4.44), 79.25%为42个月(SD = 5.85), 78.98% (SD = 5.79) 48个月,54个月(SD = 5.76), 78.93%和74.96% (SD = 7.54) 60个月。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信