F. Pern, F. Yan, K. Zaunbrecher, B. To, J. Perkins, R. Noufi
{"title":"Investigation of some transparent metal oxides as damp heat protective coating for CIGS solar cells","authors":"F. Pern, F. Yan, K. Zaunbrecher, B. To, J. Perkins, R. Noufi","doi":"10.1117/12.930539","DOIUrl":null,"url":null,"abstract":"We investigated the protective effectiveness of some transparent metal oxides (TMO) on CIGS solar cell coupons against damp heat (DH) exposure at 85°C and 85% relative humidity (RH). Sputter-deposited bilayer ZnO (BZO) with up to 0.5- μm Al-doped ZnO (AZO) layer and 0.2-μm bilayer InZnO were used as “inherent” part of device structure on CdS/CIGS/Mo/SLG. Sputter-deposited 0.2-μm ZnSnO and atomic layer deposited (ALD) 0.1-μm Al2O3 were used as overcoat on typical BZO/CdS/CIGS/Mo/SLG solar cells. The results were all negative — all TMO-coated CIGS cells exhibited substantial degradation in DH. Combining the optical photographs, PL and EL imaging, SEM surface micromorphology, coupled with XRD, I-V and QE measurements, the causes of the device degradations are attributed to hydrolytic corrosion, flaking, micro-cracking, and delamination induced by the DH moisture. Mechanical stress and decrease in crystallinity (grain size effect) could be additional degrading factors for thicker AZO grown on CdS/CIGS.","PeriodicalId":140444,"journal":{"name":"Optics + Photonics for Sustainable Energy","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics + Photonics for Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.930539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
We investigated the protective effectiveness of some transparent metal oxides (TMO) on CIGS solar cell coupons against damp heat (DH) exposure at 85°C and 85% relative humidity (RH). Sputter-deposited bilayer ZnO (BZO) with up to 0.5- μm Al-doped ZnO (AZO) layer and 0.2-μm bilayer InZnO were used as “inherent” part of device structure on CdS/CIGS/Mo/SLG. Sputter-deposited 0.2-μm ZnSnO and atomic layer deposited (ALD) 0.1-μm Al2O3 were used as overcoat on typical BZO/CdS/CIGS/Mo/SLG solar cells. The results were all negative — all TMO-coated CIGS cells exhibited substantial degradation in DH. Combining the optical photographs, PL and EL imaging, SEM surface micromorphology, coupled with XRD, I-V and QE measurements, the causes of the device degradations are attributed to hydrolytic corrosion, flaking, micro-cracking, and delamination induced by the DH moisture. Mechanical stress and decrease in crystallinity (grain size effect) could be additional degrading factors for thicker AZO grown on CdS/CIGS.