{"title":"A simple control strategy for a three-phase shunt active power filter based on second-order sliding mode","authors":"T. Mysak, Ivan Shapoval","doi":"10.1109/IEPS51250.2020.9263148","DOIUrl":null,"url":null,"abstract":"A simple control strategy of the three-phase shunt active power filter that is connected to a non-linear load network is proposed. The filter consists of a voltage source inverter on fully controlled switches, capacitor storage, and a first-order three-phase RL filter. The decomposition of the object of study according to the rates of motion of the dynamic system was performed. The fast subsystem is a circuit of compensation current control, the slow subsystem performs stabilization of the capacitor voltage. An asymptotic double-twisting algorithm to control the DC voltage was used. For the current formation, a two-dimensional sliding surface is used, which is a linear combination of the components of two-dimensional vectors - the error of the current of the RL filter and some variable. The double-twisting algorithm to calculate the instantaneous value of this variable was also used. A simulation model is developed and the results of digital experiments are analyzed. A comparison of the proposed strategy with the traditional PI-regulation by the criteria of the duration of the transition process and the coefficient of harmonic distortions in the current consumed from the network is made.","PeriodicalId":235261,"journal":{"name":"2020 IEEE 4th International Conference on Intelligent Energy and Power Systems (IEPS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 4th International Conference on Intelligent Energy and Power Systems (IEPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEPS51250.2020.9263148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
A simple control strategy of the three-phase shunt active power filter that is connected to a non-linear load network is proposed. The filter consists of a voltage source inverter on fully controlled switches, capacitor storage, and a first-order three-phase RL filter. The decomposition of the object of study according to the rates of motion of the dynamic system was performed. The fast subsystem is a circuit of compensation current control, the slow subsystem performs stabilization of the capacitor voltage. An asymptotic double-twisting algorithm to control the DC voltage was used. For the current formation, a two-dimensional sliding surface is used, which is a linear combination of the components of two-dimensional vectors - the error of the current of the RL filter and some variable. The double-twisting algorithm to calculate the instantaneous value of this variable was also used. A simulation model is developed and the results of digital experiments are analyzed. A comparison of the proposed strategy with the traditional PI-regulation by the criteria of the duration of the transition process and the coefficient of harmonic distortions in the current consumed from the network is made.