{"title":"Exploring mechanical meta-material structures through personalised shoe sole design","authors":"David Amorim, T. Nachtigall, M. B. Alonso","doi":"10.1145/3328939.3329001","DOIUrl":null,"url":null,"abstract":"Mechanical meta-material structures (MMS) are designed structures with mechanical properties not found in ordinary materials. MMS can now be created far more easily using digital manufacturing. We explore how different MMS can be combined, through the design of a shoe sole. Thereby showing the potential of using MMS to create personalized and sustainable footwear. We analysed the phenomenon of foot deformation and mapped different structures with different behaviours to meet the needs of different feet. Consequently, a shoe sole was generated by an algorithm and 3D printed in one single material with multiple properties (e.g. stiff and soft) and responsive behaviour, making it easy to recycle. We report the design phases which required using six types of software. Our findings reflect the complexity of this process given the limited availability of software tools that support it. We conclude with a list of requirements regarding tools to further explore MMS.","PeriodicalId":404567,"journal":{"name":"Proceedings of the 3rd Annual ACM Symposium on Computational Fabrication","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd Annual ACM Symposium on Computational Fabrication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3328939.3329001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
Mechanical meta-material structures (MMS) are designed structures with mechanical properties not found in ordinary materials. MMS can now be created far more easily using digital manufacturing. We explore how different MMS can be combined, through the design of a shoe sole. Thereby showing the potential of using MMS to create personalized and sustainable footwear. We analysed the phenomenon of foot deformation and mapped different structures with different behaviours to meet the needs of different feet. Consequently, a shoe sole was generated by an algorithm and 3D printed in one single material with multiple properties (e.g. stiff and soft) and responsive behaviour, making it easy to recycle. We report the design phases which required using six types of software. Our findings reflect the complexity of this process given the limited availability of software tools that support it. We conclude with a list of requirements regarding tools to further explore MMS.