Design and optimization of a liner-on-target injector for staged Z-pinch experiments using computational fluid dynamics and MHD simulations

J. Valenzuela, J. Narkis, F. Conti, I. Krasheninnikov, V. Fadeev, F. Beg, F. Wessel, H. Rahman, P. Ney, E. Mckee, T. Darling, A. Covington
{"title":"Design and optimization of a liner-on-target injector for staged Z-pinch experiments using computational fluid dynamics and MHD simulations","authors":"J. Valenzuela, J. Narkis, F. Conti, I. Krasheninnikov, V. Fadeev, F. Beg, F. Wessel, H. Rahman, P. Ney, E. Mckee, T. Darling, A. Covington","doi":"10.1109/PLASMA.2016.7534113","DOIUrl":null,"url":null,"abstract":"Summary form only given. Previous Staged Z-pinch experiments have demonstrated that gas liners (or puffs) can efficiently couple energy to a target plasma and implode uniformly, producing plasmas in High Energy Density (HED) regimes. In these experiments, a 50 kJ, 1.5 MA, 1 μs current driver was used to implode a magnetized, Kr liner onto a D+ target, producing 1010 neutrons per shot. Time-of-flight data suggested that primary and secondary neutrons were produced. MHD simulations show that, using optimized liner and plasma target conditions, neutron yield could be further increased in Staged Z-pinch implosions using the Zebra machine, a 1.5 MA and 100 ns rise time current driver. In this work we present the design and optimization of an injector for these experiments. The injector is composed of an annular high atomic number (e.g. Ar, Kr) gas-puff and an on-axis plasma gun that delivers the ionized deuterium target. The gas-puff nozzle optimization was performed using the computational fluid dynamics (CFD) code Fluent and the MHD code MACH2. The CFD simulations produce density profiles as a function of the nozzle shape and gas. These profiles are initialized in MACH2 to find the optimal liner density profile for a stable, uniform implosion that produces high neutron yield.","PeriodicalId":424336,"journal":{"name":"2016 IEEE International Conference on Plasma Science (ICOPS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Plasma Science (ICOPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLASMA.2016.7534113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Summary form only given. Previous Staged Z-pinch experiments have demonstrated that gas liners (or puffs) can efficiently couple energy to a target plasma and implode uniformly, producing plasmas in High Energy Density (HED) regimes. In these experiments, a 50 kJ, 1.5 MA, 1 μs current driver was used to implode a magnetized, Kr liner onto a D+ target, producing 1010 neutrons per shot. Time-of-flight data suggested that primary and secondary neutrons were produced. MHD simulations show that, using optimized liner and plasma target conditions, neutron yield could be further increased in Staged Z-pinch implosions using the Zebra machine, a 1.5 MA and 100 ns rise time current driver. In this work we present the design and optimization of an injector for these experiments. The injector is composed of an annular high atomic number (e.g. Ar, Kr) gas-puff and an on-axis plasma gun that delivers the ionized deuterium target. The gas-puff nozzle optimization was performed using the computational fluid dynamics (CFD) code Fluent and the MHD code MACH2. The CFD simulations produce density profiles as a function of the nozzle shape and gas. These profiles are initialized in MACH2 to find the optimal liner density profile for a stable, uniform implosion that produces high neutron yield.
利用计算流体动力学和MHD模拟技术,设计并优化了用于分段z夹紧实验的瞄准尾管喷射器
只提供摘要形式。之前的阶段z夹紧实验已经证明,气体衬垫(或泡管)可以有效地将能量耦合到目标等离子体上,并均匀地内爆,从而产生高能量密度(HED)的等离子体。在这些实验中,使用50kj, 1.5 MA, 1 μs的电流驱动器将磁化的Kr衬里内爆到D+靶上,每次发射产生1010个中子。飞行时间数据表明产生了初级和次级中子。MHD模拟表明,在优化的线性和等离子体靶条件下,使用Zebra机器(1.5 MA和100 ns上升时间电流驱动器)可以进一步提高分阶段z夹缩内爆的中子产量。在这项工作中,我们提出了用于这些实验的进样器的设计和优化。注入器由一个环形高原子序数(例如Ar, Kr)气体喷射器和一个轴上等离子体枪组成,该等离子体枪可以输送电离的氘靶。利用计算流体力学(CFD)软件Fluent和MHD软件MACH2对喷管进行了优化。CFD模拟得出了喷嘴形状和气体的函数密度分布。这些剖面在MACH2中初始化,以找到稳定、均匀内爆的最佳衬里密度剖面,从而产生高中子产率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信