Exploiting visual reranking to improve pseudo-relevance feedback for spoken-content-based video retrieval

S. Rudinac, M. Larson, A. Hanjalic
{"title":"Exploiting visual reranking to improve pseudo-relevance feedback for spoken-content-based video retrieval","authors":"S. Rudinac, M. Larson, A. Hanjalic","doi":"10.1109/WIAMIS.2009.5031421","DOIUrl":null,"url":null,"abstract":"In this paper we propose an approach that utilizes visual features and conventional text-based pseudo-relevance feedback (PRF) to improve the results of semantic-theme-based video retrieval. Our visual reranking method is based on an Average Item Distance (AID) score. AID-based visual reranking is designed to improve the suitability of items at the top of the initial results list, i.e., those feedback items selected for use in query expansion. Our method is intended to help target feedback items representative of visual regularity typifying the semantic theme of the query. Experiments performed on the VideoCLEF 2008 data set and on a number of retrieval scenarios combining the inputs from speech-transcript-based (i.e., text-based) search and visual reranking demonstrate the benefits of using AID-based visual representatives to compensate for the inherent problems of PRF, such as topic drift.","PeriodicalId":233839,"journal":{"name":"2009 10th Workshop on Image Analysis for Multimedia Interactive Services","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 10th Workshop on Image Analysis for Multimedia Interactive Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIAMIS.2009.5031421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

In this paper we propose an approach that utilizes visual features and conventional text-based pseudo-relevance feedback (PRF) to improve the results of semantic-theme-based video retrieval. Our visual reranking method is based on an Average Item Distance (AID) score. AID-based visual reranking is designed to improve the suitability of items at the top of the initial results list, i.e., those feedback items selected for use in query expansion. Our method is intended to help target feedback items representative of visual regularity typifying the semantic theme of the query. Experiments performed on the VideoCLEF 2008 data set and on a number of retrieval scenarios combining the inputs from speech-transcript-based (i.e., text-based) search and visual reranking demonstrate the benefits of using AID-based visual representatives to compensate for the inherent problems of PRF, such as topic drift.
利用视觉重排序改进基于语音内容的视频检索的伪相关反馈
本文提出了一种利用视觉特征和传统的基于文本的伪相关反馈(PRF)来改进基于语义主题的视频检索结果的方法。我们的视觉重新排序方法是基于平均项目距离(AID)分数。基于aid的视觉重排序旨在提高初始结果列表顶部项目的适用性,即那些选择用于查询扩展的反馈项目。我们的方法旨在帮助具有视觉规律性的目标反馈项,对查询的语义主题进行分类。在VideoCLEF 2008数据集上进行的实验以及结合基于语音转录(即基于文本)搜索和视觉重新排序输入的许多检索场景表明,使用基于aids的视觉代表来补偿PRF的固有问题(如主题漂移)的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信