Lossy reduction for very high dimensional data

C. Jermaine, E. Omiecinski
{"title":"Lossy reduction for very high dimensional data","authors":"C. Jermaine, E. Omiecinski","doi":"10.1109/ICDE.2002.994783","DOIUrl":null,"url":null,"abstract":"We consider the use of data reduction techniques for the problem of approximate query answering. We focus on applications for which accurate answers to selective queries are required, and for which the data are very high dimensional (having hundreds of attributes). We present a new data reduction method for this type of application, called the RS kernel. We demonstrate the effectiveness of this method for answering difficult, highly selective queries over high dimensional data using several real datasets.","PeriodicalId":191529,"journal":{"name":"Proceedings 18th International Conference on Data Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 18th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2002.994783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We consider the use of data reduction techniques for the problem of approximate query answering. We focus on applications for which accurate answers to selective queries are required, and for which the data are very high dimensional (having hundreds of attributes). We present a new data reduction method for this type of application, called the RS kernel. We demonstrate the effectiveness of this method for answering difficult, highly selective queries over high dimensional data using several real datasets.
非常高维数据的有损降低
我们考虑使用数据约简技术来解决近似查询回答问题。我们关注的是需要对选择性查询给出准确答案的应用程序,以及数据维度非常高(具有数百个属性)的应用程序。我们为这类应用提出了一种新的数据约简方法,称为RS内核。我们用几个真实的数据集证明了这种方法在回答高维数据上困难的、高度选择性的查询时的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信