Compressed sensing denoising for segmentation of localization microscopy data

K. P. Aschenbrenner, Sebastian Butzek, C. Guthier, Matthias Krufczik, M. Hausmann, F. Bestvater, J. Hesser
{"title":"Compressed sensing denoising for segmentation of localization microscopy data","authors":"K. P. Aschenbrenner, Sebastian Butzek, C. Guthier, Matthias Krufczik, M. Hausmann, F. Bestvater, J. Hesser","doi":"10.1109/CIBCB.2016.7758097","DOIUrl":null,"url":null,"abstract":"Localization microscopy (LM) allows to acquire pointillistic superresolution images of biological structures on the nanoscale. However, current structure reconstruction and segmentation approaches suffer from either exclusion of small structures or strong dependence on a-priori knowledge. We propose reconstruction methods based on compressed sensing (CS) denoising in combination with the isodata threshold for segmentation. The methods are verified on artificial test data. For the denoising, a Haar dictionary and a KSVD dictionary learning on artificial data are used. Both methods perform significantly better than the reference algorithm, a linear density filter, in terms of root-mean-square deviation from the ground truth. Furthermore, exemplary results on real LM data of irradiated cell nuclei with Heterochromatin labeling make small structures visible that are suppressed by the reference method. CS denoising demonstrates promising results for reconstruction of LM data.","PeriodicalId":368740,"journal":{"name":"2016 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2016.7758097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Localization microscopy (LM) allows to acquire pointillistic superresolution images of biological structures on the nanoscale. However, current structure reconstruction and segmentation approaches suffer from either exclusion of small structures or strong dependence on a-priori knowledge. We propose reconstruction methods based on compressed sensing (CS) denoising in combination with the isodata threshold for segmentation. The methods are verified on artificial test data. For the denoising, a Haar dictionary and a KSVD dictionary learning on artificial data are used. Both methods perform significantly better than the reference algorithm, a linear density filter, in terms of root-mean-square deviation from the ground truth. Furthermore, exemplary results on real LM data of irradiated cell nuclei with Heterochromatin labeling make small structures visible that are suppressed by the reference method. CS denoising demonstrates promising results for reconstruction of LM data.
定位显微数据的压缩感知去噪分割
定位显微镜(LM)允许在纳米尺度上获得生物结构的点状超分辨率图像。然而,现有的结构重构和分割方法存在对小结构的排除和对先验知识的依赖等问题。我们提出了基于压缩感知(CS)去噪和等数据阈值分割相结合的重建方法。用人工试验数据对方法进行了验证。采用Haar字典和KSVD字典学习对人工数据进行去噪。这两种方法都比参考算法(线性密度滤波器)在均方根偏差方面表现得更好。此外,用异染色质标记辐照细胞核的真实LM数据的示例性结果使参考方法抑制的小结构可见。CS去噪在LM数据重建中显示出良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信