Faults detection in squirrel cage induction generator rotor on wind turbine: Hilbert Huang transform application

L. Noureddine, A. Kouzou, M. Guemana, A. Hafaifa
{"title":"Faults detection in squirrel cage induction generator rotor on wind turbine: Hilbert Huang transform application","authors":"L. Noureddine, A. Kouzou, M. Guemana, A. Hafaifa","doi":"10.1109/ICOSC.2017.7958670","DOIUrl":null,"url":null,"abstract":"In this study we investigate the possibility of rotor broken bar fault detection in squirrel cage induction generator of a wind turbine using spectral analysis of the stator currents. The numerical method, presented in this work, based on the Hilbert Huang transform shows the possibility of improving the detection of faults in electrical machines. Using the Hilbert Huang transform analyses the stator current signal using intrinsic mode functions, which are extracted using the process of empirical mode decomposition. However, the use of Hilbert transform based time domain approach in Hilbert Huang transform for analysis of stator current signature leads to scope for subjective error in calculation of characteristic defect frequencies of the broken rotor bars.","PeriodicalId":113395,"journal":{"name":"2017 6th International Conference on Systems and Control (ICSC)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 6th International Conference on Systems and Control (ICSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSC.2017.7958670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study we investigate the possibility of rotor broken bar fault detection in squirrel cage induction generator of a wind turbine using spectral analysis of the stator currents. The numerical method, presented in this work, based on the Hilbert Huang transform shows the possibility of improving the detection of faults in electrical machines. Using the Hilbert Huang transform analyses the stator current signal using intrinsic mode functions, which are extracted using the process of empirical mode decomposition. However, the use of Hilbert transform based time domain approach in Hilbert Huang transform for analysis of stator current signature leads to scope for subjective error in calculation of characteristic defect frequencies of the broken rotor bars.
风力发电机鼠笼式感应发电机转子故障检测:Hilbert Huang变换的应用
本文研究了利用定子电流的频谱分析方法对风力发电机鼠笼式感应发电机转子断条故障进行检测的可能性。本文提出的基于Hilbert Huang变换的数值方法显示了改进电机故障检测的可能性。利用Hilbert Huang变换,利用固有模态函数对定子电流信号进行分析,并利用经验模态分解过程提取固有模态函数。然而,在希尔伯特黄变换中使用基于希尔伯特变换的时域方法分析定子电流特征,导致在计算转子断条的特征缺陷频率时存在主观误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信