{"title":"Hardware-in-loop validation of a dynamic control employed for a hybrid DC microgrid incorporating high gain DC-DC power stages","authors":"Vulisi Narendra Kumar, B. R. Naidu, G. Panda","doi":"10.1109/APPEEC.2017.8308930","DOIUrl":null,"url":null,"abstract":"The wide penetration of low voltage renewable energy sources into microgrid necessitates the use of high-gain converters as power processing units escorted with dynamic control methodologies. Under this scenario, this paper investigates the performance of high-gain converter forming a common DC common link in a hybrid DC microgrid comprising of solar photovoltaic (SPV) generation, supercapacitor and battery bank. A high gain DC-DC boost power stage is used to couple the SPV array to the common DC common link, whereas high gain bi-directional converter is used to link the energy storage devices to the common DC bus. The high gain topologies used in this paper employs coupling inductor, intermediate buffer capacitor and a passive clamp network to obtain the high voltage gain with the same number of switches as that of the conventional topologies. A dual-loop control strategy has been employed for the operation of interfacing high gain converters. Hardware-in-Loop (HIL) validation of the presented control scheme is carried out using Zynq ZC702 FPGA kit via Xilinx system generator.","PeriodicalId":247669,"journal":{"name":"2017 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APPEEC.2017.8308930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The wide penetration of low voltage renewable energy sources into microgrid necessitates the use of high-gain converters as power processing units escorted with dynamic control methodologies. Under this scenario, this paper investigates the performance of high-gain converter forming a common DC common link in a hybrid DC microgrid comprising of solar photovoltaic (SPV) generation, supercapacitor and battery bank. A high gain DC-DC boost power stage is used to couple the SPV array to the common DC common link, whereas high gain bi-directional converter is used to link the energy storage devices to the common DC bus. The high gain topologies used in this paper employs coupling inductor, intermediate buffer capacitor and a passive clamp network to obtain the high voltage gain with the same number of switches as that of the conventional topologies. A dual-loop control strategy has been employed for the operation of interfacing high gain converters. Hardware-in-Loop (HIL) validation of the presented control scheme is carried out using Zynq ZC702 FPGA kit via Xilinx system generator.