Learning with queries corrupted by classification noise

J. C. Jackson, E. Shamir, Clara Shwartzman
{"title":"Learning with queries corrupted by classification noise","authors":"J. C. Jackson, E. Shamir, Clara Shwartzman","doi":"10.1109/ISTCS.1997.595156","DOIUrl":null,"url":null,"abstract":"Kearns introduced the \"statistical query\" (SQ) model as a general method for producing learning algorithms which are robust against classification noise. We extend this approach in several ways, in order to tackle algorithms that use \"membership queries\": focusing on the more stringent model of \"persistent noise\". The main ingredients in the general analysis are: (1) Smallness of dimension of both the targets' class and the queries' class. (2) Independence of the noise variables. Persistence restricts independence forcing repeated invocation of the same point x to give the same label. We apply the general analysis and ad-hoc considerations to get noise-robust version of Jackson's Harmonic Sieve (1995), which learns DNF under the uniform distribution. This corrects an error in his earlier analysis of noise tolerant DNF learning.","PeriodicalId":367160,"journal":{"name":"Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISTCS.1997.595156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Kearns introduced the "statistical query" (SQ) model as a general method for producing learning algorithms which are robust against classification noise. We extend this approach in several ways, in order to tackle algorithms that use "membership queries": focusing on the more stringent model of "persistent noise". The main ingredients in the general analysis are: (1) Smallness of dimension of both the targets' class and the queries' class. (2) Independence of the noise variables. Persistence restricts independence forcing repeated invocation of the same point x to give the same label. We apply the general analysis and ad-hoc considerations to get noise-robust version of Jackson's Harmonic Sieve (1995), which learns DNF under the uniform distribution. This corrects an error in his earlier analysis of noise tolerant DNF learning.
使用被分类噪声破坏的查询进行学习
Kearns引入了“统计查询”(SQ)模型,作为生成对分类噪声具有鲁棒性的学习算法的一般方法。为了解决使用“成员查询”的算法,我们以几种方式扩展了这种方法:专注于更严格的“持续噪声”模型。一般分析的主要成分是:(1)目标类和查询类的维数都较小。(2)噪声变量的独立性。持久性限制独立性,强制重复调用相同的点x以提供相同的标签。我们应用一般分析和特别考虑来获得Jackson's Harmonic Sieve(1995)的噪声鲁棒版本,该版本在均匀分布下学习DNF。这纠正了他在早期对耐噪声DNF学习的分析中的一个错误。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信