Sentiment Analysis for Real-Time Micro Blogs using Twitter Data

Reshma Banu, G. F. A. Ahammed, G. Divya, V. D. Reddy, Nuthanakanti Bhaskar, M. Kanthi
{"title":"Sentiment Analysis for Real-Time Micro Blogs using Twitter Data","authors":"Reshma Banu, G. F. A. Ahammed, G. Divya, V. D. Reddy, Nuthanakanti Bhaskar, M. Kanthi","doi":"10.1109/INOCON57975.2023.10101366","DOIUrl":null,"url":null,"abstract":"The basic purpose of sentiment analysis is to determine how someone feels when they comment or express their feelings or emotions. Positive, neutral, and negative emotions are the three categories into which emotions are divided. Everyone will use and apply this analysis on social media; online; everyone expresses their opinions by clicking on the like, remark, or share buttons. Using the Random Forest, SVM, and Nave Bayes algorithms, the Twitter tweets in this study were identified as positive or negative, with F1-Scores of 0.224, 0.410, and 0.702, respectively, and accuracy values of 50%, 52%, and 73%.","PeriodicalId":113637,"journal":{"name":"2023 2nd International Conference for Innovation in Technology (INOCON)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 2nd International Conference for Innovation in Technology (INOCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INOCON57975.2023.10101366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The basic purpose of sentiment analysis is to determine how someone feels when they comment or express their feelings or emotions. Positive, neutral, and negative emotions are the three categories into which emotions are divided. Everyone will use and apply this analysis on social media; online; everyone expresses their opinions by clicking on the like, remark, or share buttons. Using the Random Forest, SVM, and Nave Bayes algorithms, the Twitter tweets in this study were identified as positive or negative, with F1-Scores of 0.224, 0.410, and 0.702, respectively, and accuracy values of 50%, 52%, and 73%.
基于Twitter数据的实时微博情感分析
情绪分析的基本目的是确定某人在评论或表达自己的感受或情绪时的感受。积极情绪、中性情绪和消极情绪是情绪的三种类型。每个人都会在社交媒体上使用和应用这一分析;在线;每个人都通过点赞、评论或分享按钮来表达自己的观点。本研究使用随机森林、支持向量机和朴素贝叶斯算法对Twitter推文进行正面和负面识别,F1-Scores分别为0.224、0.410和0.702,准确率分别为50%、52%和73%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信