Perturbation Effect: A Metric to Counter Misleading Validation of Feature Attribution

Ilija Simic, V. Sabol, Eduardo Veas
{"title":"Perturbation Effect: A Metric to Counter Misleading Validation of Feature Attribution","authors":"Ilija Simic, V. Sabol, Eduardo Veas","doi":"10.1145/3511808.3557418","DOIUrl":null,"url":null,"abstract":"This paper provides evidence indicating that the most commonly used metric for validating feature attribution methods in eXplainable AI (XAI) is misleading when applied to time series data. To evaluate whether an XAI method attributes importance to relevant features, these are systematically perturbed while measuring the impact on the performance of the classifier. The assumption is that a drastic performance reduction with increasing perturbation of relevant features indicates that these are indeed relevant. We demonstrate empirically that this assumption is incomplete without considering low relevance features in the used metrics. We introduce a novel metric, the Perturbation Effect Size, and demonstrate how it complements existing metrics to offer a more faithful assessment of importance attribution. Finally, we contribute a comprehensive evaluation of attribution methods on time series data, considering the influence of perturbation methods and region size selection.","PeriodicalId":389624,"journal":{"name":"Proceedings of the 31st ACM International Conference on Information & Knowledge Management","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 31st ACM International Conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3511808.3557418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper provides evidence indicating that the most commonly used metric for validating feature attribution methods in eXplainable AI (XAI) is misleading when applied to time series data. To evaluate whether an XAI method attributes importance to relevant features, these are systematically perturbed while measuring the impact on the performance of the classifier. The assumption is that a drastic performance reduction with increasing perturbation of relevant features indicates that these are indeed relevant. We demonstrate empirically that this assumption is incomplete without considering low relevance features in the used metrics. We introduce a novel metric, the Perturbation Effect Size, and demonstrate how it complements existing metrics to offer a more faithful assessment of importance attribution. Finally, we contribute a comprehensive evaluation of attribution methods on time series data, considering the influence of perturbation methods and region size selection.
扰动效应:一种对抗特征属性误导验证的度量
本文提供的证据表明,用于验证可解释人工智能(XAI)中特征归因方法的最常用度量在应用于时间序列数据时具有误导性。为了评估XAI方法是否对相关特征赋予重要性,在测量对分类器性能的影响时,系统地对这些特征进行扰动。假设是,随着相关特征的扰动增加,性能急剧下降表明这些确实是相关的。我们通过经验证明,如果不考虑所使用度量中的低相关性特征,这个假设是不完整的。我们引入了一种新的度量,即扰动效应大小,并演示了它如何补充现有的度量来提供更可靠的重要性归因评估。最后,考虑扰动方法和区域大小选择的影响,对时间序列数据的归因方法进行了综合评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信