Boundary Morphology for Hierarchical Simplification of Archaeological Fragments

H. ElNaghy, L. Dorst
{"title":"Boundary Morphology for Hierarchical Simplification of Archaeological Fragments","authors":"H. ElNaghy, L. Dorst","doi":"10.1515/mathm-2020-0101","DOIUrl":null,"url":null,"abstract":"Abstract When fitting archaeological artifacts, one would like to have a representation that simplifies fragments while preserving their complementarity. In this paper, we propose to employ the scale-spaces of mathematical morphology to hierarchically simplify potentially fitting fracture surfaces. We study the masking effect when morphological operations are applied to selected subsets of objects. Since fitting locally depends on the complementarity of fractures only, we introduce ‘Boundary Morphology’ on surfaces rather than volumes. Moreover, demonstrating the Lipschitz nature of the terracotta fractures informs our novel extrusion method to compute both closing and opening operations simultaneously. We also show that in this proposed representation the effects of abrasion and uncertainty are naturally bounded, justifying the morphological approach. This work is an extension of our contribution earlier published in the proceedings of ISMM2019 [10].","PeriodicalId":244328,"journal":{"name":"Mathematical Morphology - Theory and Applications","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Morphology - Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mathm-2020-0101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract When fitting archaeological artifacts, one would like to have a representation that simplifies fragments while preserving their complementarity. In this paper, we propose to employ the scale-spaces of mathematical morphology to hierarchically simplify potentially fitting fracture surfaces. We study the masking effect when morphological operations are applied to selected subsets of objects. Since fitting locally depends on the complementarity of fractures only, we introduce ‘Boundary Morphology’ on surfaces rather than volumes. Moreover, demonstrating the Lipschitz nature of the terracotta fractures informs our novel extrusion method to compute both closing and opening operations simultaneously. We also show that in this proposed representation the effects of abrasion and uncertainty are naturally bounded, justifying the morphological approach. This work is an extension of our contribution earlier published in the proceedings of ISMM2019 [10].
考古碎片层次简化的边界形态学
当拟合考古文物时,人们希望有一种简化碎片的表示,同时保持它们的互补性。在本文中,我们建议使用数学形态学的尺度空间来分层简化潜在拟合的断裂表面。我们研究了当形态学操作应用于选定的对象子集时的掩蔽效应。由于局部拟合仅取决于裂缝的互补性,因此我们在表面而不是体积上引入了“边界形态学”。此外,证明了陶土裂缝的Lipschitz性质,为我们的新型挤压方法提供了信息,可以同时计算闭合和打开操作。我们还表明,在这个提议的表示中,磨损和不确定性的影响是自然有界的,证明了形态学方法。这项工作是我们之前在ISMM2019会议录中发表的贡献的延伸[10]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信