{"title":"Demand Estimation Using Managerial Responses to Automated Price Recommendations","authors":"Daniel Garcia, J. Tolvanen, Alexander K. Wagner","doi":"10.2139/ssrn.3863830","DOIUrl":null,"url":null,"abstract":"We provide a new framework to identify demand elasticities in markets where managers rely on algorithmic recommendations for price setting and apply it to a data set containing bookings for a sample of midsized hotels in Europe. Using nonbinding algorithmic price recommendations and observed delay in price adjustments by decision makers, we demonstrate that a control-function approach, combined with state-of-the-art model-selection techniques, can be used to isolate exogenous price variation and identify demand elasticities across hotel room types and over time. We confirm these elasticity estimates with a difference-in-differences approach that leverages the same delays in price adjustments by decision makers. However, the difference-in-differences estimates are more noisy and only yield consistent estimates if data are pooled across hotels. We then apply our control-function approach to two classic questions in the dynamic pricing literature: the evolution of price elasticity of demand over and the effects of a transitory price change on future demand due to the presence of strategic buyers. Finally, we discuss how our empirical framework can be applied directly to other decision-making situations in which recommendation systems are used. This paper was accepted by Omar Besbes, revenue management and market analytics.","PeriodicalId":345380,"journal":{"name":"CESifo: Industrial Organisation (Topic)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CESifo: Industrial Organisation (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3863830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We provide a new framework to identify demand elasticities in markets where managers rely on algorithmic recommendations for price setting and apply it to a data set containing bookings for a sample of midsized hotels in Europe. Using nonbinding algorithmic price recommendations and observed delay in price adjustments by decision makers, we demonstrate that a control-function approach, combined with state-of-the-art model-selection techniques, can be used to isolate exogenous price variation and identify demand elasticities across hotel room types and over time. We confirm these elasticity estimates with a difference-in-differences approach that leverages the same delays in price adjustments by decision makers. However, the difference-in-differences estimates are more noisy and only yield consistent estimates if data are pooled across hotels. We then apply our control-function approach to two classic questions in the dynamic pricing literature: the evolution of price elasticity of demand over and the effects of a transitory price change on future demand due to the presence of strategic buyers. Finally, we discuss how our empirical framework can be applied directly to other decision-making situations in which recommendation systems are used. This paper was accepted by Omar Besbes, revenue management and market analytics.