Design of a Low-pass Filter from Fractional Chebyshev Polynomials

Andrew Amgad, A. M. Abdelaty, M. M. Elbarawy, H. A. Attia, A. Radwan
{"title":"Design of a Low-pass Filter from Fractional Chebyshev Polynomials","authors":"Andrew Amgad, A. M. Abdelaty, M. M. Elbarawy, H. A. Attia, A. Radwan","doi":"10.1109/ICM52667.2021.9664937","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel magnitude approximation for the fractional-order Chebyshev low-pass filter. The proposed magnitude response is constructed from the fractional Chebyshev polynomials originating from the series solution of fractional-order Chebyshev differential equation. The transfer function of the fractional-order Sallen-Key biquad is used as a prototype for the approximation. To identify the coefficients of the Sallen-Key topology, the flower pollination algorithm (FPA) is used to minimize an objective function representing the sum of relative magnitude error. The optimization problem is executed in MATLAB, and stable solutions are chosen for the implementation. Two different cases are investigated corresponding to filter orders 1.8 and 2.7. LT-Spice is used for circuit simulations, and the Valsa approach is used for fractional-order capacitor approximation. The original magnitude response is compared with the optimized one and the circuit simulation results, and this comparison shows a magnitude error less than 2%.","PeriodicalId":212613,"journal":{"name":"2021 International Conference on Microelectronics (ICM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Microelectronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM52667.2021.9664937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper introduces a novel magnitude approximation for the fractional-order Chebyshev low-pass filter. The proposed magnitude response is constructed from the fractional Chebyshev polynomials originating from the series solution of fractional-order Chebyshev differential equation. The transfer function of the fractional-order Sallen-Key biquad is used as a prototype for the approximation. To identify the coefficients of the Sallen-Key topology, the flower pollination algorithm (FPA) is used to minimize an objective function representing the sum of relative magnitude error. The optimization problem is executed in MATLAB, and stable solutions are chosen for the implementation. Two different cases are investigated corresponding to filter orders 1.8 and 2.7. LT-Spice is used for circuit simulations, and the Valsa approach is used for fractional-order capacitor approximation. The original magnitude response is compared with the optimized one and the circuit simulation results, and this comparison shows a magnitude error less than 2%.
基于分数阶切比雪夫多项式的低通滤波器设计
本文介绍了分数阶切比雪夫低通滤波器的一种新的幅度近似。所提出的幅度响应是由分数阶切比雪夫微分方程的级数解产生的分数阶切比雪夫多项式构造而成的。采用分数阶Sallen-Key二元曲线的传递函数作为逼近的原型。为了识别salen - key拓扑的系数,采用花授粉算法(FPA)最小化表示相对幅度误差和的目标函数。在MATLAB中执行优化问题,并选择稳定解进行实现。研究了对应于滤波器阶1.8和阶2.7的两种不同情况。LT-Spice用于电路模拟,Valsa方法用于分数阶电容近似。将原始幅度响应与优化后的幅度响应及电路仿真结果进行了比较,结果表明,幅度误差小于2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信