Refined Attention Module for WSI Cancer Diagnosis

T. S. Sheikh, Jee Yeon Kim, Migyung Cho
{"title":"Refined Attention Module for WSI Cancer Diagnosis","authors":"T. S. Sheikh, Jee Yeon Kim, Migyung Cho","doi":"10.1109/ICKII55100.2022.9983555","DOIUrl":null,"url":null,"abstract":"In clinical pathology, the accurate and precise classification of cancer is one of the critical challenges due to the complex pattern of cancer cells. This study proposes an effective attention module to highlight the most important parts of cancer whole slide images (WSIs). Our attention module improves the significance of learnable features and overcomes the noisy features while training. Conventional attention modules use only feature extraction capability to learn information but we merge noisy removal capability within our attention module to leverage and randomly discard the noise during the training of the model which enhances the performance of the WSI classification task. We evaluated the performance of our module on our biopsy needle WSIs dataset, named bnWSIs. Our dataset contains a total of 24,613 labeled patches extracted from 21 WSIs. The dataset is split into two types of classification categories, with different variants of magnifications, and classes. The key is to improve the existing state-of-the-art (SoTA) performance by using the attention module, For binary classification, the achieved accuracies are improved up to 7%, whereas in multi-class classification are 6% with three magnification levels.","PeriodicalId":352222,"journal":{"name":"2022 IEEE 5th International Conference on Knowledge Innovation and Invention (ICKII )","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 5th International Conference on Knowledge Innovation and Invention (ICKII )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICKII55100.2022.9983555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In clinical pathology, the accurate and precise classification of cancer is one of the critical challenges due to the complex pattern of cancer cells. This study proposes an effective attention module to highlight the most important parts of cancer whole slide images (WSIs). Our attention module improves the significance of learnable features and overcomes the noisy features while training. Conventional attention modules use only feature extraction capability to learn information but we merge noisy removal capability within our attention module to leverage and randomly discard the noise during the training of the model which enhances the performance of the WSI classification task. We evaluated the performance of our module on our biopsy needle WSIs dataset, named bnWSIs. Our dataset contains a total of 24,613 labeled patches extracted from 21 WSIs. The dataset is split into two types of classification categories, with different variants of magnifications, and classes. The key is to improve the existing state-of-the-art (SoTA) performance by using the attention module, For binary classification, the achieved accuracies are improved up to 7%, whereas in multi-class classification are 6% with three magnification levels.
改进的WSI肿瘤诊断关注模块
在临床病理学中,由于癌细胞的复杂模式,准确准确的分类是癌症的关键挑战之一。本研究提出了一个有效的关注模块来突出肿瘤全幻灯片图像(wsi)中最重要的部分。我们的注意力模块提高了可学习特征的重要性,克服了训练过程中的噪声特征。传统的注意模块仅使用特征提取能力来学习信息,而我们在注意模块中合并噪声去除能力,在模型训练过程中利用并随机丢弃噪声,从而提高了WSI分类任务的性能。我们在我们的活检针wsi数据集(名为bnwsi)上评估了我们的模块的性能。我们的数据集包含从21个wsi中提取的24,613个标记补丁。数据集分为两种类型的分类类别,具有不同的放大变量和类别。关键是通过使用注意力模块来提高现有的最先进(SoTA)性能,对于二元分类,实现的准确率提高了7%,而在多类分类中,三个放大级别的准确率提高了6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信