Synchronous learning versus asynchronous learning in artificial neural networks

J. Wang
{"title":"Synchronous learning versus asynchronous learning in artificial neural networks","authors":"J. Wang","doi":"10.1109/ICSYSE.1991.161109","DOIUrl":null,"url":null,"abstract":"Conditions of configuring feedforward neural networks without local minima are analyzed for both synchronous and asynchronous learning rules. Based on the analysis, a learning algorithm that integrates a synchronous-asynchronous learning rule with a dynamic configuration rule to train feedforward neural networks is presented. The theoretic analysis and numerical simulation reveal that the proposed learning algorithm substantially reduces the likelihood of local minimum solutions in supervised learning.<<ETX>>","PeriodicalId":250037,"journal":{"name":"IEEE 1991 International Conference on Systems Engineering","volume":"146 40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE 1991 International Conference on Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSYSE.1991.161109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Conditions of configuring feedforward neural networks without local minima are analyzed for both synchronous and asynchronous learning rules. Based on the analysis, a learning algorithm that integrates a synchronous-asynchronous learning rule with a dynamic configuration rule to train feedforward neural networks is presented. The theoretic analysis and numerical simulation reveal that the proposed learning algorithm substantially reduces the likelihood of local minimum solutions in supervised learning.<>
人工神经网络中的同步学习与异步学习
分析了同步学习规则和异步学习规则下无局部极小值前馈神经网络的配置条件。在此基础上,提出了一种将同步-异步学习规则与动态配置规则相结合的前馈神经网络训练算法。理论分析和数值模拟结果表明,所提出的学习算法大大降低了监督学习中局部最小解的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信