Node Classification and Link Prediction in Social Graphs using RLVECN

Bonaventure C. Molokwu, Shaon Bhatta Shuvo, N. Kar, Ziad Kobti
{"title":"Node Classification and Link Prediction in Social Graphs using RLVECN","authors":"Bonaventure C. Molokwu, Shaon Bhatta Shuvo, N. Kar, Ziad Kobti","doi":"10.1145/3400903.3400928","DOIUrl":null,"url":null,"abstract":"Node classification and link prediction problems in Social Network Analysis (SNA) remain open research problems with respect to Artificial Intelligence (AI). Inherent representations about social network structures can be effectively harnessed for training AI models in a bid to detect clusters via classification of actors as well as predict ties with regard to a given social network. In this paper, we have proposed a unique hybrid model: Representation Learning via Knowledge-Graph Embeddings and ConvNet (RLVECN). Our proposition is designed for analyzing and extracting expressive feature representations from social network structures to aid in link prediction, node classification and community detection tasks. RLVECN utilizes an edge sampling technique for exploiting features of a given social network via learning the context of each actor with respect to its associate actors.","PeriodicalId":334018,"journal":{"name":"32nd International Conference on Scientific and Statistical Database Management","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"32nd International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3400903.3400928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Node classification and link prediction problems in Social Network Analysis (SNA) remain open research problems with respect to Artificial Intelligence (AI). Inherent representations about social network structures can be effectively harnessed for training AI models in a bid to detect clusters via classification of actors as well as predict ties with regard to a given social network. In this paper, we have proposed a unique hybrid model: Representation Learning via Knowledge-Graph Embeddings and ConvNet (RLVECN). Our proposition is designed for analyzing and extracting expressive feature representations from social network structures to aid in link prediction, node classification and community detection tasks. RLVECN utilizes an edge sampling technique for exploiting features of a given social network via learning the context of each actor with respect to its associate actors.
基于RLVECN的社交图节点分类与链接预测
社会网络分析(Social Network Analysis, SNA)中的节点分类和链接预测问题一直是人工智能(AI)研究的开放性问题。关于社会网络结构的固有表征可以有效地用于训练人工智能模型,以便通过行动者分类来检测集群,并预测与给定社会网络相关的关系。在本文中,我们提出了一种独特的混合模型:基于知识图嵌入和卷积神经网络的表示学习(RLVECN)。我们的命题旨在从社会网络结构中分析和提取富有表现力的特征表示,以帮助进行链接预测、节点分类和社区检测任务。RLVECN利用边缘采样技术,通过学习每个参与者相对于其关联参与者的上下文来利用给定社交网络的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信