Liang Liu, Mingzhu Shen, Ruihao Gong, F. Yu, Hailong Yang
{"title":"NNLQP: A Multi-Platform Neural Network Latency Query and Prediction System with An Evolving Database","authors":"Liang Liu, Mingzhu Shen, Ruihao Gong, F. Yu, Hailong Yang","doi":"10.1145/3545008.3545051","DOIUrl":null,"url":null,"abstract":"Deep neural networks (DNNs) are widely used in various applications. The accurate and latency feedback is essential for model design and deployment. In this work, we attempt to alleviate the cost of model latency acquisition from two aspects: latency query and latency prediction. To ease the difficulty of acquiring model latency on multi-platform, our latency query system can automatically convert DNN model into the corresponding executable format, and measure latency on the target hardware. Powered by this, latency queries can be fulfilled with a simple interface calling. For the efficient utilization of previous latency knowledge, we employ a MySQL database to store numerous models and the corresponding latencies. In our system, the efficiency of latency query can be boosted by 1.8 ×. For latency prediction, we first represent neural networks with the unified GNN-based graph embedding. With the help of the evolving database, our model-based latency predictor achieves better performance, which realizes 12.31% accuracy improvement compared with existing methods. Our codes are open-sourced at https://github.com/ModelTC/NNLQP.","PeriodicalId":360504,"journal":{"name":"Proceedings of the 51st International Conference on Parallel Processing","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 51st International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3545008.3545051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Deep neural networks (DNNs) are widely used in various applications. The accurate and latency feedback is essential for model design and deployment. In this work, we attempt to alleviate the cost of model latency acquisition from two aspects: latency query and latency prediction. To ease the difficulty of acquiring model latency on multi-platform, our latency query system can automatically convert DNN model into the corresponding executable format, and measure latency on the target hardware. Powered by this, latency queries can be fulfilled with a simple interface calling. For the efficient utilization of previous latency knowledge, we employ a MySQL database to store numerous models and the corresponding latencies. In our system, the efficiency of latency query can be boosted by 1.8 ×. For latency prediction, we first represent neural networks with the unified GNN-based graph embedding. With the help of the evolving database, our model-based latency predictor achieves better performance, which realizes 12.31% accuracy improvement compared with existing methods. Our codes are open-sourced at https://github.com/ModelTC/NNLQP.