Mapping Algorithms for Multiprocessor Tasks on Multi-Core Clusters

Jörg Dümmler, T. Rauber, G. Rünger
{"title":"Mapping Algorithms for Multiprocessor Tasks on Multi-Core Clusters","authors":"Jörg Dümmler, T. Rauber, G. Rünger","doi":"10.1109/ICPP.2008.42","DOIUrl":null,"url":null,"abstract":"In this paper, we explore the use of hierarchically structured multiprocessor tasks (M-tasks) for programming multi-core cluster systems.These systems often have hierarchically structured interconnection networks combining different computing resources, starting with the interconnect within multi-core processors up to the interconnection network combining nodes of the cluster or supercomputer. M-task programs can support the effective use of the computing resources by adapting the task structure of the program to the hierarchical organization of the cluster system and by exploiting the available data parallelism within the M-tasks. In particular, we consider different mapping algorithms for M-tasks and investigate the resulting efficiency and scalability. We present experimental results for different application programs and different multi-core systems.","PeriodicalId":388408,"journal":{"name":"2008 37th International Conference on Parallel Processing","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 37th International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2008.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

In this paper, we explore the use of hierarchically structured multiprocessor tasks (M-tasks) for programming multi-core cluster systems.These systems often have hierarchically structured interconnection networks combining different computing resources, starting with the interconnect within multi-core processors up to the interconnection network combining nodes of the cluster or supercomputer. M-task programs can support the effective use of the computing resources by adapting the task structure of the program to the hierarchical organization of the cluster system and by exploiting the available data parallelism within the M-tasks. In particular, we consider different mapping algorithms for M-tasks and investigate the resulting efficiency and scalability. We present experimental results for different application programs and different multi-core systems.
多核集群上多处理器任务的映射算法
在本文中,我们探讨了使用分层结构的多处理器任务(M-tasks)来编程多核集群系统。这些系统通常具有结合不同计算资源的分层结构互连网络,从多核处理器内部的互连开始,一直到结合集群或超级计算机节点的互连网络。m任务程序可以通过使程序的任务结构适应集群系统的分层组织和利用m任务内可用的数据并行性来支持计算资源的有效利用。特别地,我们考虑了m任务的不同映射算法,并研究了由此产生的效率和可扩展性。给出了不同应用程序和不同多核系统的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信