A Novelty Search Approach for Automatic Test Data Generation

M. Boussaa, Olivier Barais, G. Sunyé, B. Baudry
{"title":"A Novelty Search Approach for Automatic Test Data Generation","authors":"M. Boussaa, Olivier Barais, G. Sunyé, B. Baudry","doi":"10.1109/SBST.2015.17","DOIUrl":null,"url":null,"abstract":"In search-based structural testing, metaheuristic search techniques have been frequently used to automate the test data generation. In Genetic Algorithms (GAs) for example, test data are rewarded on the basis of an objective function that represents generally the number of statements or branches covered. However, owing to the wide diversity of possible test data values, it is hard to find the set of test data that can satisfy a specific coverage criterion. In this paper, we introduce the use of Novelty Search (NS) algorithm to the test data generation problem based on statement-covered criteria. We believe that such approach to test data generation is attractive because it allows the exploration of the huge space of test data within the input domain. In this approach, we seek to explore the search space without regard to any objectives. In fact, instead of having a fitness-based selection, we select test cases based on a novelty score showing how different they are compared to all other solutions evaluated so far.","PeriodicalId":219232,"journal":{"name":"2015 IEEE/ACM 8th International Workshop on Search-Based Software Testing","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE/ACM 8th International Workshop on Search-Based Software Testing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBST.2015.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

In search-based structural testing, metaheuristic search techniques have been frequently used to automate the test data generation. In Genetic Algorithms (GAs) for example, test data are rewarded on the basis of an objective function that represents generally the number of statements or branches covered. However, owing to the wide diversity of possible test data values, it is hard to find the set of test data that can satisfy a specific coverage criterion. In this paper, we introduce the use of Novelty Search (NS) algorithm to the test data generation problem based on statement-covered criteria. We believe that such approach to test data generation is attractive because it allows the exploration of the huge space of test data within the input domain. In this approach, we seek to explore the search space without regard to any objectives. In fact, instead of having a fitness-based selection, we select test cases based on a novelty score showing how different they are compared to all other solutions evaluated so far.
一种自动生成测试数据的新颖性搜索方法
在基于搜索的结构测试中,元启发式搜索技术经常被用于自动生成测试数据。例如,在遗传算法(GAs)中,测试数据是基于通常表示语句或分支所覆盖的数量的目标函数来奖励的。然而,由于可能的测试数据值的多样性,很难找到能够满足特定覆盖标准的测试数据集。本文将新颖性搜索算法引入到基于语句覆盖准则的测试数据生成问题中。我们相信这种测试数据生成的方法是有吸引力的,因为它允许在输入域内探索巨大的测试数据空间。在这种方法中,我们寻求在不考虑任何目标的情况下探索搜索空间。事实上,我们选择的测试用例不是基于适合度的选择,而是基于新颖性得分,显示它们与目前评估的所有其他解决方案相比有多么不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信