Frequency-Shaped Second-Order Sliding Mode Control for Smart Suspension Systems

Sayed Royel, Q. Ha, R. Aguilera
{"title":"Frequency-Shaped Second-Order Sliding Mode Control for Smart Suspension Systems","authors":"Sayed Royel, Q. Ha, R. Aguilera","doi":"10.1109/ICARCV.2018.8581139","DOIUrl":null,"url":null,"abstract":"Design of a frequency-shaped second-order sliding mode (FS2SM) controller is demonstrated by means of exploiting second-order low-pass filter (LPF) to model the dynamic sliding surface to shape the frequency characteristics of the equivalent dynamics. The proposed technique is numerically verified in the simulation of a half-car model (HCM) with inbuilt active hydraulically interconnected suspension (HIS) system. The closed-loop performances confirm that inclusion of an appropriate filter in the control scheme allows not only to reduce the roll angle but also its spectrum can be shaped.","PeriodicalId":395380,"journal":{"name":"2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCV.2018.8581139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Design of a frequency-shaped second-order sliding mode (FS2SM) controller is demonstrated by means of exploiting second-order low-pass filter (LPF) to model the dynamic sliding surface to shape the frequency characteristics of the equivalent dynamics. The proposed technique is numerically verified in the simulation of a half-car model (HCM) with inbuilt active hydraulically interconnected suspension (HIS) system. The closed-loop performances confirm that inclusion of an appropriate filter in the control scheme allows not only to reduce the roll angle but also its spectrum can be shaped.
智能悬架系统的频率型二阶滑模控制
通过利用二阶低通滤波器(LPF)对动态滑动面进行建模,形成等效动力学的频率特性,设计了频率型二阶滑模(FS2SM)控制器。通过对一辆内置主动液压互联悬架(HIS)系统的半车模型(HCM)的仿真,验证了该方法的有效性。闭环性能证实,在控制方案中加入适当的滤波器不仅可以减小滚转角,而且可以塑造其频谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信