Building an occupancy model from sensor networks in office environments

Federico Castanedo, D. López-de-Ipiña, H. Aghajan, R. Kleihorst
{"title":"Building an occupancy model from sensor networks in office environments","authors":"Federico Castanedo, D. López-de-Ipiña, H. Aghajan, R. Kleihorst","doi":"10.1109/ICDSC.2011.6042929","DOIUrl":null,"url":null,"abstract":"The work presented here aims to answer this question: Using just binary occupancy sensors is it possible to build a behaviour occupancy model over long-term logged data? Sensor measurements are grouped to form artificial words (activities) and documents (set of activities). The goal is to infer the latent topics which are assumed to be the common routines from the observed data. An unsupervised probabilistic model, namely the Latent Dirichlet Allocation (LDA), is applied to automatically discover the latent topics (routines) in the data. Experimental results using real logged data of 24 weeks from an office building, with different number of topics, are shown. The results show the power of the LDA model in extracting relevant patterns from sensor network data.","PeriodicalId":385052,"journal":{"name":"2011 Fifth ACM/IEEE International Conference on Distributed Smart Cameras","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fifth ACM/IEEE International Conference on Distributed Smart Cameras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSC.2011.6042929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

The work presented here aims to answer this question: Using just binary occupancy sensors is it possible to build a behaviour occupancy model over long-term logged data? Sensor measurements are grouped to form artificial words (activities) and documents (set of activities). The goal is to infer the latent topics which are assumed to be the common routines from the observed data. An unsupervised probabilistic model, namely the Latent Dirichlet Allocation (LDA), is applied to automatically discover the latent topics (routines) in the data. Experimental results using real logged data of 24 weeks from an office building, with different number of topics, are shown. The results show the power of the LDA model in extracting relevant patterns from sensor network data.
从办公环境中的传感器网络构建占用模型
这里提出的工作旨在回答这个问题:仅仅使用二进制占用传感器,是否有可能在长期记录数据上建立一个行为占用模型?将传感器测量值分组,形成人工单词(活动)和文档(活动集)。目标是从观察到的数据中推断出假定为常见例程的潜在主题。应用无监督概率模型潜狄利克雷分配(Latent Dirichlet Allocation, LDA)自动发现数据中的潜主题(例程)。给出了利用某办公楼24周的真实日志数据,在不同主题数量下的实验结果。结果表明了LDA模型在从传感器网络数据中提取相关模式方面的强大功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信